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ABSTRACT

Aim There has been considerable effort allocated to understanding the impact of
climate change on our physical environment, but comparatively little to how life on
Earth and ecosystem services will be affected. Therefore, we have developed a
spatial–temporal food web model of the global ocean, spanning from primary
producers through to top predators and fisheries. Through this, we aim to evaluate
how alternative management actions may impact the supply of seafood for future
generations.

Location Global ocean.

Methods We developed a modelling complex to initially predict the combined
impact of environmental parameters and fisheries on global seafood production,
and initially evaluated the model’s performance through hindcasting. The model-
ling complex has a food web model as core, obtains environmental productivity
from a biogeochemical model and assigns global fishing effort spatially. We tuned
model parameters based on Markov chain random walk stock reduction analysis,
fitting the model to historic catches. We evaluated the goodness-of-fit of the model
to data for major functional groups, by spatial management units and globally.

Results This model is the most detailed ever constructed of global fisheries, and it
was able to replicate broad patterns of historic fisheries catches with best agreement
for the total catches and good agreement for species groups, with more variation at
the regional level.

Main conclusions We have developed a modelling complex that can be used for
evaluating the combined impact of fisheries and climate change on upper-trophic
level organisms in the global ocean, including invertebrates, fish and other large
vertebrates. The model provides an important step that will allow global-scale
evaluation of how alternative fisheries management measures can be used for
mitigation of climate change.
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INTRODUCTION

A golden rule of modelling is to use a scale and form that is

appropriate for the questions it is to address. When dealing with

the impact that fisheries policies and climate change may have

on future seafood supply, that scale is global since seafood is the

most traded food commodity (Smith et al., 2010) and climate

change already causes distributions of marine organisms to shift

beyond regional borders (Poloczanska et al., 2013).

With regard to form, we note that there are several model

types that may be of interest, including size-based models

(Jennings et al., 2008; Smith et al., 2010), individual-based

models (Shin & Cury, 2004; Poloczanska et al., 2013) and

trophic food web models (e.g. Christensen & Pauly, 1992). We
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apply a food web model because of the opportunities this creates

for addressing biodiversity-related questions (a topic we expect

to use the present model for in future studies) and because it is

by far the most used methodology for marine ecosystems, (e.g.

Coll et al., 2008a). However, we emphasize that there is a need to

develop alternative model forms for comparative purposes.

It is also relevant to consider as an argument for global mod-

elling that while general circulation models generally converge

well at the global level, the results for individual regions show a

wide range of variation (Cai et al., 2009). The implications of

this support the notion that models must be constructed to suit

the scale of the questions they are to address. Downscaling is as

much a problem as scaling up.

With this in mind, and to add to our understanding of the

Earth as a system (Falkowski et al., 2000), we present a spatial–

temporal food web model of life in the global ocean, spanning

from primary producers through to top predators and fisheries.

‘The global ocean is an ecosystem’ is the thesis behind this effort,

and we intend to focus on the impact human actions will have

on the food supply for future generations. Here we describe

some of the steps used to build a global ocean modelling

complex, and evaluate model performance with regard to fit to

historic seafood landings.

Previously, we developed a global ecosystem modelling

complex, EcoOcean (Alder et al., 2007), that was used for global

assessments (e.g. Brink, 2010). EcoOcean relied on 18 regional

models that jointly covered the world ocean, and while this

provided a versatile attempt at global ocean ecosystem model-

ling, it was a cumbersome approach to work with given the need

to populate and analyse 18 food web models in sequence.

As a follow-up, we developed a new approach for database-

driven ecosystem model generation in order to construct and

evaluate models for each of the world’s large marine ecosystems

(LMEs; Christensen et al., 2009). A major advantage of this

database- and rule-driven approach was automation of much of

the model construction and evaluation, and it allowed for inclu-

sion of extensive global data layers, notably as developed

by the Sea Around Us project (Pauly, 2007, http://

www.seaaroundus.org).

Here, we build on the database-driven modelling (i.e. LMEs;

Christensen et al., 2009) in order to develop a data and model-

ling framework as an updated version of the EcoOcean complex.

The new model is global and temporal with a variable spatial

grid resolution of 0.5° latitude by 0.5° longitude; a notable addi-

tion is that is driven by temporal–spatial data. For the initial

model tuning and testing we aggregated the model processes to

1° latitude by 1° longitude to speed up the development. The

model as implemented here covered the period from 1950–2050

with monthly time steps, but in this study we focus on tuning

the model so as to obtain capability for hindcasting for the

period 1950–2006.

Tuning the model to past data by comparing time dynamic

model runs with spatial–time dynamic runs is one of the con-

tributions of the present study. Model tuning for spatial models

is always a challenge that involves a combination of spatial and

non-spatial parameters and which must recognize that full

tuning based on multiple spatial runs as a rule exceeds current

computational capacities.

METHODOLOGY

Biogeochemistry and primary production model

Marine populations such as invertebrates, fish and marine

mammals are sensitive to primary production patterns, making

it necessary to consider environmental productivity patterns as

well as fisheries and trophic impacts in order to successfully

replicate historic trends in marine ecosystems (Mackinson et al.,

2009; Christensen & Walters, 2011).

With this in mind, we linked a trophic food web model to a

newly developed atmosphere–ocean circulation model called

the carbon, ocean biogeochemistry and lower trophic level

model (COBALT; Stock et al., 2014). The COBALT model cap-

tures large-scale patterns in carbon flow through the planktonic

food web, and was implemented in the GFDL modular ocean

model version 4p1 (Griffies, 2012) with sea-ice dynamics as

described by Winton (2000). The model was run on a global

domain with a spatial resolution of 1° apart from at the equator

where resolution was 1/3°. We resampled the model output to 1°

latitude by 1° longitude throughout. Atmospheric forcing was

from the Common Ocean-Ice Reference Experiment (CORE-II)

data set (Large & Yeager, 2009) and covered the period from

1948 to 2006 after a 60-year spin-up. COBALT uses 50 vertical

layers, but we aggregated over those, as the spatial food web

model is two-dimensional – the depth dimension is considered

implicitly through food web interactions and habitat preference

patterns.

From COBALT, we obtained spatial–temporal output of pro-

duction rates for three functional producer groups in the model,

i.e. for large phytoplankton (nlgp in COBALT), small phyto-

plankton (nsmp) and diazotrophs (ndi). For the simulations

reported here, we used monthly output from COBALT (1950–

2006) to drive the food web model, and there was no feedback to

COBALT.

Food web model

We constructed a trophic submodel using a customized version

of the Ecopath with Ecosim (EwE) approach and software

(Christensen & Pauly, 1992; Walters et al., 1999, 2000;

Christensen & Walters, 2004).

As the first step we built a mass-balance (Ecopath) model as a

baseline for parameterization of the time and spatial dynamic

simulations. This model followed the definitions and method-

ology of Christensen et al. (2009) and separated fishes into

‘small’ (asymptotic length, Lω < 30 cm), ‘medium’ (Lω = 30–

89 cm), and ‘large’ (Lω ≥ 90 cm) species. For fish, we distin-

guished pelagics, demersals, bathypelagics, bathydemersals,

benthopelagics, reef fishes, sharks, rays and flatfishes. The large

pelagic fishes were modelled with an age-structured model

incorporating two life-stages as groupings for monthly cohorts

(Walters et al., 2010). Invertebrates were separated into
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cephalopods, other exploitable molluscs (called ‘exploitable

molluscs’), other non-exploited molluscs (called ‘other mol-

luscs’), krill, shrimps, other crustaceans, lobsters and crabs, jelly-

fish, zooplankton, megabenthos (> 10 mm), macrobenthos

(1–10 mm), meiobenthos (0.1–1 mm), corals and a ‘soft corals,

sponges, etc.’ group. Marine mammal groupings were baleen

whales, toothed whales, dolphin and porpoises, and pinnipeds

(seals and sea lions), and we combined all seabirds in one group.

Primary producers were included as small and large phyto-

plankton, diazotrophs and benthic plants. We further consid-

ered bacteria and a single detritus group. There were 51

functional groups in the food web model.

The Ecopath baseline model has the following key input

variables: biomass (B), production/biomass ratio (P/B),

consumption/biomass ratio (Q/B) and diet composition.

Further, the model calls for input of fisheries catches for the

baseline year (1950). We parameterized the baseline Ecopath

model following Christensen et al. (2009), but let B and P/B vary

based on stochastic stock reduction analysis (SRA) as described

below. Further, we obtained diet composition for marine birds

from Karpouzi (2005) that complemented information available

from previous modelling efforts (Christensen et al., 2009). Diets

for marine mammals follow Christensen et al. (2009). Basic

input tables are presented in Appendix S1 in the Supporting

Information and diets in Appendix S2.

Foraging arena model

Predator–prey dynamics in the food web model was based on

foraging arena theory (Walters & Juanes, 1993; Ahrens et al.,

2012) as implemented in the Ecosim model of EwE (Walters

et al., 1997, 2000). The Ecosim model describes the dynamics of

predator–prey interactions based on the relationship:

d dB t eavB B v aB ZBj j i j j= +( ) −2 (1)

where Bj is predator biomass, Bi is prey biomass, Z is the total

instantaneous mortality rate for the predator (combining

fishing and predation mortalities), e is the growth efficiency

(production/consumption; can vary during ontogeny), v is prey

vulnerability exchange rate, which includes behavioural and

density dependence effects, and a is the predator effective search

rate. The vulnerable prey density V is represented by the forag-

ing arena equation:

V vB v aBi j= +( )2 (2)

with the terms as defined above. The foraging arena model is

flexible for the implementation of functional responses, and has

made it possible to replicate ecosystem-level historic trends in

exploited marine ecosystems as well as to make plausible pre-

dictions (Christensen & Walters, 2011).

Habitat capacity model

We used a new methodology (Christensen et al., 2014) to esti-

mate relative habitat capacity by functional group as a function

of cell-specific habitat attributes, which for instance can be

water depth, temperature, pH and bottom type. We linked the

time-varying habitat capacity, C, to the foraging arena trophic

interactions based on the assumption that the habitat capacity

affects the size of the cell-specific foraging arena available to the

given functional group. Using the same notations as for the

foraging arena above, we have:

V vB v aB Ci j= +( )2 . (3)

Using habitat capacity as a modifier of the foraging arena con-

sumption rate resulted in the equilibrium spatial distribution

patterns for a functional group being proportional to its habitat

capacity (unless there were changes in prey abundance and pre-

dation mortality).

For the habitat capacity model, we obtained minimum and

maximum depth distributions for 1418 fish and invertebrate

species from FishBase (http://www.fishbase.org) and

SeaLifeBase (http://www.sealifebase.org), and used these to

obtain a depth distribution based on triangular distributions

with maximum occurrence at a third of the depth range. Each of

the species was allocated to a functional group of the trophic

model, and the depth distribution for each functional group was

then averaged across species applying the total catch by species

as weighting. For species without catches we used the smallest

catch for a species by functional group as the weighting factor.

The resulting depth distributions are in Figure S2 of Appen-

dix S3. For each spatial cell in the model, the habitat suitability

was then calculated based on the relative productivity for each

species at the average cell depth. The habitat capacity model was

made spatially and temporally explicit using new GIS linkage

capabilities (Steenbeek et al., 2013). The large pelagics (both

adult and juvenile groups) were further distributed with a sea

surface temperature preference based on a meta-analysis for

tuna (Boyce, 2004), assuming that tuna constitutes the bulk of

the biomass for these functional groups.

Fisheries

Fleet effort distribution

We derived effort from a global spatial effort database

(Anticamara et al., 2011; Watson et al., 2013) which covered the

period from 1950 to 2006 with country- and fishing gear-

specific fleets for a total of 1365 fleets. The effort was standard-

ized across gear types and years in kWh. The database operated

with 14 gear types (see Table 2), and we used these as ‘fleets’ in

the global food web model. The ‘effort creep’, i.e. increase in

effort that is related to technological development (e.g. echo

sounders and GPS systems) was set to 2% year−1, which is at the

low end of global estimates (Pauly & Palomares, 2010) but

higher than what was estimated for Greek fisheries (Damalas

et al., 2014).

The global effort database is still under development, and by

checking the effort by country and by fleet we found a number

of issues that needed consideration. In some cases, this resulted

in changes to the database, with notable issues being:

Modelling life and fisheries in the global ocean
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• Effort for the purse seine, non-tuna boat (fleet 10) in Peru was

vastly underestimated, not allowing for the vast expansion that

has taken place in anchoveta fisheries since the 1960s.

• Where there were missing effort values for certain years by

country and by fleet, the missing values were interpolated

linearly.

• For tuna fleets (fleets 12–14) there were very low efforts in the

1950s; the effort was therefore scaled with 1960 as the base year

for these fleets.

The relative effort by fleet is shown in Figure S1 of Appendix S3.

In order to consider regional differences in effort for the non-tuna

fleets (fleets 1–11 in Table 2), the relative fleet efforts were distrib-

uted spatially by large marine ecosystems (LMEs; Sherman et al.,

2005) for which the relative efforts were set based on historic

effort. For each LME, the effort was scaled as a proportion of the

total effort (measured in kilowatt days) across all fished cells.

Where a country’s EEZ spanned several LMEs, the country effort

was as a rule distributed equally between the LMEs.

Fishing effort was distributed using a gravity model where the

effort allocated to each spatial cell is based on the profitability of

fishing estimated as the difference between expected income

(biomass × catchability × fish price) and the cost of fishing by

cell (Caddy, 1975; Hilborn & Walters, 1987). We estimated the

spatial cost of fishing as proportional to the distance (in km)

from the nearest coast (apart from in polar regions, where we

assumed that there were no ports in the polar LMEs). An addi-

tional cost of fishing in areas with ice cover, Ii, was added to the

spatial cost of fishing (to limit fishing there), and estimated

based on a logistic function:

I Ii
i= +( )− −( )

max
.1 20 0 3e δ (4)

where Ii was estimated from the proportion of each cell, δi, that is

covered by ice each year. Imax, the maximum cost of fishing, was

set to the cut-off point for spatial allocation of fishing effort. We

have no empirical background for estimating Ii, but the logistic

function we applied provides what we consider to be reasonable

behaviour by limiting fishing in areas with substantial ice.

Tuna fleets (fleets 12–14) were assumed to work throughout

the world ocean, so that the only restrictions were on the depth

range in which they could operate (Table 2), and where it would

be profitable to operate based on the gravity model.

We obtained prices per functional group from a global price

database (Sumaila et al., 2007), expressed as real prices for 2000

by functional group (see Table S2 in Appendix S1).

Catches

The Sea Around Us project uses a geographic information

system to map global fisheries catches from 1950 to the present,

with explicit consideration of coral reefs, seamounts, estuaries

and other critical habitats of fish, marine invertebrates, marine

mammals and other components of marine biodiversity

(Watson et al., 2004; http://www.seaaroundus.org). In the

present study, we linked directly to the underlying spatial catch

dataset and we used these catches as ‘observed catches’ to evalu-

ate model runs. The catches for the base year, 1950, were also

used to parameterize the landings by fleets in the initial under-

lying Ecopath initial model.

Time dynamic model tuning

Evaluation of model time dynamics (without any spatial reso-

lution) before using a model for spatial and time dynamic simu-

lations makes it possible to evaluate and tune many model

drivers and save time in the model tuning process. Here, we used

the time dynamic Ecosim model (Walters et al., 1997, 2000) to

evaluate settings for a number of parameters (notably the base-

line biomasses and P/B rates for exploited groups) based on the

model’s ability to replicate catch time series (e.g. Shannon et al.,

2004; Coll et al., 2008c; Walters et al., 2008).

Using a time dynamic version of a global ocean model in

essence assumes that the world ocean is an ecosystem and that

some of the model drivers can be used without explicit spatial

considerations. This allows an evaluation of consistency

between key model drivers, rates and state variables without the

confounding effects of spatial ecological and fishing dynamics.

On the other hand, the time dynamic model will let all fleets

operate everywhere, thus assuming that spatial fishing effort is

completely additive. Here, we developed a series of model tuning

and evaluation steps that involved the aspects described below

for an initial tuning of key model parameters.

Stock reduction analysis

We extracted catches by functional group and by year from the

catch database described above. Based on this, we constructed a

time series in Ecosim with ‘forced catches’, i.e. a SRA (Kimura

et al., 1984), implemented as a stochastic SRA (Walters et al.,

2006) with two, additive, search criteria. The first was that

catches could be replicated in Ecosim, which notably requires

that the populations are maintained through the simulation.

SRAs are very sensitive to the initial biomass, B0; if the initial

biomass is too low the population will crash. The second cri-

terion was to avoid B0 that are too high as this results in

biomasses being unrealistically steady. For this, we assumed as a

target that the terminal fishing mortality for fish in the world

ocean should be close to the natural mortality for the species

groups. We ran a minimization routine 10,000 times in order to

minimize the summed squared residuals (SS):

SS = ′ −( ) + ′ −( )[ ]∑ Y Y F Mi y i y i y i

i y

, , ,

,

2 2

(5)

where ′Yi y, is the estimated catch of group i in the last year (y) of

simulation, Yi,y is the ‘observed’ catch in year y, ′Fi y, is the esti-

mated fishing mortality in year y, and Mi is the total natural

mortality (predation and other mortality) for group i in the base

year (1950).

We allowed biomasses for large pelagic fish and small

bathypelagic fish (the only exploited groups with input

biomasses; see Table 1) to vary with a coefficient of variation

V. Christensen et al.
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Table 1 Characteristics of the functional groups in the trophic submodel. The number of species that were used for each group for
deriving depth distributions is indicated. The estimated parameters are either B (biomass) or EE (ecotrophic efficiency). See Appendix S1
for basic input parameters.

No. Group name No. of species Estimated parameter Examples of species/groups

1 Pelagics, small 67 B Anchovy, menhaden, sprat

2 Pelagics, medium 102 B Jacks, mackerel, herring

3 Pelagics, large 53 EE Tuna, Spanish mackerel

4 Demersals, small 54 B Sculpins, gobies, sand lance

5 Demersals, medium 176 B Rockcod, mullet, snapper

6 Demersals, large 67 B Ling, grouper, haddock

7 Bathypelagics, small 7 EE Lanternfish

8 Bathypelagics, medium 16 B Orange roughy, grenadiers

9 Bathypelagics, large 4 B Escolar, opah

10 Bathydemersals, small 9 B Dragonfish, cardinalfish

11 Bathydemersals, medium 25 B Dories, gurnards, hake

12 Bathydemersals, large 18 B Monkfish, sablefish, Patagonian toothfish

13 Benthopelagics, small 15 B Codling, croaker, seabream

14 Benthopelagics, medium 81 B Seabass, pompano, icefish

15 Benthopelagics, large 54 B Cod, salmon, hake, grenadiers

16 Reef fish, small 33 B Wrasse, bream, damselfish, rabbitfish

17 Reef fish, medium 124 B Moray, snapper, grunts, groupers

18 Reef fish, large 49 B Groupers, snappers, trevally, barracuda

19 Sharks, small medium 11 B Dogfishes, catsharks, smooth-hound

20 Sharks, large 59 B Thresher, hammerhead, tiger, mako

21 Rays, small medium 19 B Skate and rays

22 Rays, large 35 B Eagle and manta rays

23 Flatfish, small medium 54 B Sole, flounder, plaice

24 Flatfish, large 7 B Turbot, halibut, European plaice

25 Cephalopods 27 B Squids, cuttlefishes, octopus

26 Shrimps 71 B Pandalus, tiger prawns, brown shrimp

27 Lobsters, crabs 79 B Snow crab, king crab, spiny lobster

28 Jellyfish EE

29 Molluscs, exploitable 134 B Clams, scallops, sea urchins and other non-cephalopods

30 Krill 3 B Euphausia, Antarctic krill, Norwegian krill

31 Baleen whales B

32 Toothed whales B

33 Pinnipeds B

34 Birds B

35 Megabenthos EE

36 Macrobenthos B

37 Corals B

38 Soft corals, sponges, etc. B

39 Zooplankton other EE

40 Phytoplankton, large B

41 Benthic plants EE

42 Pelagics, large young 53 EE

43 Meiobenthos EE

44 Dolphins, porpoises EE

45 Microzooplankton B

46 Other crustaceans B

47 Other molluscs B Non-exploited molluscs

48 Phytoplankton, small B

49 Diazotrophs B

50 Bacteria B

51 Detritus EE

Modelling life and fisheries in the global ocean
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(CV; SD/mean) of 0.05, P/B for all exploited groups to vary with

CV 0.05, and the ecotrophic efficiency (EE) for exploited groups

(apart from large pelagics and small bathypelagics) to vary with

CV 0.05. For each run, the minimization routine samples for

these parameters, evaluated if the model was mass-balanced,

and resampled iteratively when this was not the case, and then

evaluates the minimization criteria. We used a fast and efficient

Matyas (1965) search routine, which allowed the use of nonlin-

ear search criteria for mass-balance of the ecosystem model.

When an improved parameter set was found, the search routine

used these parameters as basis for the subsequent sampling. This

allowed for a Markov chain random walk through the parameter

space.

From the SRA we obtained a modified set of parameters for

the model state variables and production rates for the fished

groups, and we used these as the basis for the subsequent model

runs. We also obtained a set of fishing mortality rates (by group

and by year) which we used for comparison with the fishing

mortalities from a temporal (Ecosim) run with fleet effort as

driver.

Model implementation framework

We developed a framework for constructing the modelling

complex leading to the global ocean model, EcoOcean, through

database extraction following Christensen et al. (2009). The

framework extracts spatial models for different areas and with

different spatial resolutions. By default the area is global (or

rather 90° N to 80° S ignoring the Antarctic landmass), and the

resolution is 0.5° latitude by 0.5° longitude.

The first step in the process was to develop an Ecopath model

(Christensen & Pauly, 1992) to be used for the modelling frame-

work. For this we used a database-derived model (Christensen

et al., 2009) updated with spatial and ecological information

from global databases (as explained above). The model

biomasses were updated for those groups where information

was available from databases (see Christensen et al., 2009).

Then, catches were read from the catch database for the base

year (which here was 1950).

Using a diet database from FishBase (Froese & Pauly, 2006),

the diet for each functional group was averaged where there was

species-specific information available. These diets were then

used to replace the initial diets in the Ecopath model.

Then the framework read the fleet effort database

(Anticamara et al., 2011), which was by country and gear type

(see Table 2), and performed the modifications and interpola-

tions that were described in the ‘Fleet effort distribution’ section

above. It then constructed time series with effort by year and by

gear (Fig. S1 in Appendix S3), and these time series were stored

in the model database.

Information about preferred depth zones by species were read

by species and averaged by functional group to obtain average

depth distributions for the different functional groups in the

model. These were added to each of the time dynamic scenarios.

Further, spatial basemaps were created with selectable resolution

(0.5° or 1°), and the basemaps were populated with spatial data

and saved with the model database. We provide a schematic

overview of the modelling process in Fig. 1.

Programming environments

The modelling framework was implemented as a VB.NET

module that was coupled with the EwE model. Through its

integration with EwE the model had full access to the EwE

graphic user interface, which facilitated both model develop-

ment and evaluation.

Table 2 Fishing gear types. Target groups indicate only major
groups or ‘diverse’ where there are many groups. Depth range (m)
indicates depths at which each fleet was allowed to operate.

No. Name Target groups

Depth

range

(m)

1 Other Molluscs, pelagics, demersals 0–1000

2 Lines, non-tuna Demersals, very diverse 0–2000

3 Longline, non-tuna Large fish 0–2000

4 Trap Diverse 0–1000

5 Dredge Molluscs 0–1000

6 Trawl, bottom Diverse 0–1000

7 Trawl, shrimp Shrimp 0–1000

8 Trawl, midwater Pelagics 0–1000

9 Seine Pelagics, demersals 0–1000

10 Purse seine, non-tuna Pelagics, demersals 0–1000

11 Gillnet Diverse 0–1000

12 Pole and line tuna Large pelagics All

13 Longline, tuna Large pelagics >10 m

14 Purse seine, tuna Large pelagics >10 m

Biomass
1950

Fish
Base Catch COBALT

Food
web

Gra
vity

Diets
1950

Catch
1950

Rates
1950 SRA

Catch

Database

Model

Parameters

Prediction

Comparison

Global 
data

Habit.
cap.

Models Effort

Static Temporal Spatial

Figure 1 Overview of the modelling process involving
construction of the static Ecopath model, the temporal Ecosim
model with stock reduction analysis (SRA) and the
spatial–temporal modelling complex. Habit. cap. refers to a
habitat capacity model, and the environmental impacts are
obtained from the COBALT model. Effort is distributed based on
a gravity model. Arrows indicate flow of information or
comparisons as indicated.
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The model runtime for a 56-year run (with a 10-year spin-up

period) with 1° resolution is 90 min on a 24-core PC, and more

than 12 h for the version with 0.5° resolution. While this is fast

for a global spatial model it must be noted that evaluating uncer-

tainty calls for a very large number of model runs, and this can

be prohibitively time-consuming. With this in mind, the model

was ported to a LINUX cluster computing environment (at

Compute Canada’s WestGrid). Given the amount of .NET

legacy code involved, which is tied to the Windows environment,

a version of the spatial model without the user interface was

prepared so that it could be run under Mono 3.0, a cross-

platform runtime environment that enables execution of .NET

code on other operating systems such as LINUX.

RESULTS AND DISCUSSION

We obtained a reasonable fit to fishing mortality for many of the

exploited groups (Fig. 2). Therefore, the main conclusion is that

the SRA and temporal model approach produced fishing mor-

talities that were of similar magnitude for the majority of the

groups. Further, there were temporal differences in the series

that may well be caused by not considering that prices vary

differentially over time (Sumaila et al., 2007), and this will affect

how fishers allocate effort between different target fish species

(Salas et al., 2004).

Our main fitting criterion for the spatial model was to

produce a reasonable fit to observed catches. We did not apply a

formal fitting approach based on an objectivity function as is the

norm for temporal dynamic ecosystem modelling (Christensen

& Walters, 2011), as that exceeds what is feasible at present for

global spatial models. As a consequence we note that in this

study not applying a formal fitting procedure minimizes the

chance that we will be overfitting the model, which tends to

result in poor predictive capability.

We compared observed catch data by functional groups

aggregated spatially with the catch data predicted by the global

spatial model. Even though the model used the average catch by

fishing fleet in 1950 as its baseline – and this does come from the

observed catch data – the predicted catches over time are based

on the fleet effort database, which is independent of the catch
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Figure 2 Fishing mortality for functional
groups at the global level as obtained from
stochastic stock reduction analysis (SRA;
solid line) and from fleet effort based on
the time dynamic global ocean model
(Effort; stippled line). The catch trends
from the Sea Around Us database are
indicated by shading.
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database and is spatially explicit. We therefore concluded that

the observed and predicted catches over time can be considered

independent. Figure 1 serves to illustrate this conclusion.

The immediate conclusion when comparing observed versus

predicted catches by functional group for the years 1950 to 2000

(Fig. 3a, b) as well as for the time series (1950–2006; Fig. 4) was

that the global model is capable of replicating group-specific

landings, even if far from perfectly. The spatial model used the

observed catches for the 1950 baseline, and one should therefore

assume that the observed and predicted catches should be the

same or very similar for this year. It must be stressed, however,

that the functional groups and fishing fleets have to be distributed
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spatially, and that this spatialization involves concentrating most

of the groups in the shallow coastal parts of the ocean – where the

bulk of global fish production indeed takes place. The fisheries

were likewise concentrated in these areas, and overall the 1950

results (Fig. 3a) showed good agreement in trend between

observed and predicted catches, with a general distribution

around the 1:1 line (and within half an order of magnitude of the

observed; see Appendix S5 for the spatial results of predicted and

observed catch). Spatially by LME, these results show how the

catches in 1950 were concentrated in the Northern Hemisphere

and Asia.

The predicted group catches for year 2000 (Fig. 3b) were dis-

tributed along the 1:1 line, and showed good agreement with the

observed catches. The predicted catches for the dominant

groups (i.e. those with catches exceeding 1 million tonnes) are

well within half an order of magnitude from the observed

catches. Catches by LME were generally overestimated for the

LMEs with low catches in both 1950 and 2000 (Fig. 3c, d), but

with considerably more variation than for catches by functional

groups. The main implication of Fig. 3 is that catches were better

predicted at the functional group level than they were regionally,

which we find promising as our interest in the model primarily

centres around predictions of future seafood production overall.

Closer examination of Fig. 4 shows that some key problems

are overestimation of the small pelagic catches and underesti-

mation of the medium-sized pelagics. Overall, however, this

almost evens out. The figure also reflects that the model does not

capture well the recent stagnation in global catches – assuming it

is real; ‘observed’ catches are estimates as well. The key factor for

this is the continued increase in small pelagics and small

demersals, both of which will have to be examined in more

detail. However, we expect that updates of the global effort data-

base will help remedy this.

With this study we have developed a functional global spatial–

temporal ocean model that can be used for evaluating how major

drivers in the form of environmental productivity combined

with fishing effort affect the ocean. For the first time this

approach allows the future impact of alternative climate models

on life in the ocean to be evaluated. Here we focused on the initial

model fit to historic data and on evaluating the impact of historic

environmental productivity and fisheries on fish biomasses. In

future we will develop the modelling complex further.

Results from the model regarding catch suggest that our mod-

elling complex can generally make a successful prediction of

fisheries in the ocean. While we did fit some of the model pro-

duction parameters to catches based on non-spatial model runs,

the spatial–temporal model runs relies strongly on spatial pat-

terns that were not considered in the non-spatial runs, and we

therefore conclude that it is not a circular argument to fit the

initial model to catches, and then to subsequently evaluate how

the spatial model fits catches.

We found that catches are better predicted at the functional

group level than they are regionally, and this highlights that

further efforts need to be developed in the study of spatial–

temporal allocation of fishing effort.A factor that may contribute

to a better match of predicted and observed catches is that

observed catches are probably underestimated due to large illegal,

unreported and unregulated (IUU) amounts being missed in

official statistics (Agnew et al., 2009). The spatial catch distribu-

tions over time illustrate the expansion of fisheries, mainly in the

Northern Hemisphere in 1950, to southern regions and Asian

countries in 2000. This spatial–temporal pattern is in line with

the previously described expansion and ecological footprint of

fisheries (Coll et al., 2008b; Swartz et al., 2010). It is a short-

coming of the effort data included here that we do not have effort

from outside the LMEs for non-tuna fleets. This is a topic that will

need consideration in coming iterations of the model.

There are still considerable improvements needed for the

modelling complex presented here before it is fully functional for

all its intended uses. On the parameter front, we do not, for

instance, include temperature effects directly in the food web

model, only indirectly through the linked climate model. For

future development we will extend the modelling complex with a

focus on: (1) governance aspects to evaluate fisheries policies that

promotes resilience to climate change; (2) the interplay between

aquaculture and capture fisheries; and (3) global seafood trade.

However, this study shows that global modelling efforts are not

only needed but are indeed both possible and making progress.
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