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Abstract

Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and

catches based on bioclimate envelope models are available, but to date they have not considered interspecific interac-

tions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-

based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species’

size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts

are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with

pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the

North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between

predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators

and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly

incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate.

Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific

interactions on responses to climate change, and better inform managers about plausible ecological and fishery conse-

quences of a changing environment.
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Introduction

Climate change affects ocean conditions, including tem-

perature, salinity, ice coverage, currents, oxygen level,

acidity and consequently growth, body size, distribution,

productivity and abundance of marine species, includ-

ing those that are exploited by fisheries (Perry et al.,

2005; Behrenfeld et al., 2006; Brander, 2007; P€ortner,

2010; Simpson et al., 2011; Cheung et al., 2013). Over a

range of greenhouse gas emission scenarios (IPCC,

2007), changes in the marine environment are predicted

to be more rapid in the 21st century with implications

for marine ecosystems and dependent industries (Roes-

sig et al., 2004; Lam et al., 2012; Merino et al., 2012).

A range of modelling approaches have been devel-

oped to predict the potential effects of future climate

change on species distributions and abundance (Stock

et al., 2011). One class of models, species-based biocli-

mate envelope models, have been used to predict redis-

tribution of both terrestrial and aquatic species (Pearson

& Dawson, 2003; Jones et al., 2012). The Dynamic Biocli-

mate Envelope Model (DBEM) developed by Cheung

et al. (2008a,b, 2009, 2011) projects changes in marine

species distribution, abundance and body size with
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explicit consideration of population dynamics, dispersal

(larval and adult) and ecophysiology (Cheung et al.,

2008a,b, 2009, 2011, 2013). Projections suggest that there

will be a high rate of species invasions in high-latitude

regions and a potential high rate of local extinction in

the tropics and semi enclosed seas in the 21st century

(Cheung et al., 2009). Moreover, as a result of predicted

changes in range and primary productivity, Cheung

et al. (2010) project that maximum catch potential of

exploited species is expected to decrease in the tropics

and to increase in high latitudes. However, these

projections do not account for the effects of species

interactions on redistribution and abundance, thus

introducing a source of structural uncertainty (Cheung

et al., 2010).

Rates of primary production and transfer efficiency

influence production and biomass of consumers. ‘Size-

spectrum’ models have been developed to describe

energy transfer from primary producers to consumers

of progressively larger body size (e.g. Dickie et al.,

1987) and variants of these models have been devel-

oped and applied to predict potential biomass, produc-

tion and size structure of fish in the world’s oceans

from estimates of primary production and temperature

(Jennings et al., 2008), and to predict the responses of

fish communities to fishing and climate change (Blan-

chard et al., 2011, 2012). These size-based models are

not taxonomically resolved, and this limits the range of

applications, given that species identity is usually a key

consideration for management, monitoring and regula-

tory purposes.

Here, we combine the strengths of the DBEM

(i.e. focus on identified species) with those of the size

spectrum model (i.e. focus on trophic interactions) to

predict spatial and temporal changes in species’ abun-

dance and distribution in response to predicted future

changes in temperature and primary production. Forty-

eight of the most abundant and commercially impor-

tant marine fishes in the North Atlantic, here defined as

Food and Agriculture Organization (FAO) statistical

area 27, are included. The size spectrum is used to

determine resource limits in a given geographical area

and these limits, along with habitat suitability for a

given species, determine the biomass of that species

that can be supported in this area.

Materials and methods

A modelling approach that integrates the species-based DBEM

model with the size spectrum approach, hereafter called size-

spectrum DBEM (SS-DBEM) was developed. The SS-DBEM:

(i) estimates potential biomass supported by the system; (ii)

predicts habitat suitability; and (iii) models species interac-

tions. Predictions from the SS-DBEM are then compared with

those from a DBEM model that does not incorporate species

interactions (NSI-DBEM, where NSI denotes no species inter-

actions).

Potential biomass supported at each body size class

The size-spectrum is described as a log-log relationship

between abundance and body size. The slope of the spectrum

is determined by trophic transfer efficiency and the relation-

ships between the body sizes of predators and their prey

(Borgmann, 1987; Jennings & Mackinson, 2003). The height of

the spectrum is determined by primary production and

describes the total abundance of individuals from all species

that can be supported in any defined body size class (e.g.

Boudreau & Dickie, 1992).

As predator-prey mass ratios and transfer efficiencies in

marine food chains do not depend systematically on the mean

rate of primary production or mean temperature (Barnes et al.,

2010), less energy is transferred to consumers of a given body

size when food webs are supported by smaller primary pro-

ducers (Barnes et al., 2010). Much of the variation in the body

size distribution of primary producers depends on the abso-

lute rate of primary production, with picoplankton, the small-

est phytoplankton, dominating when primary production is

low (Agawin et al., 2000). Thus, the median and mean body

sizes of phytoplankton decrease with decreasing rates of pri-

mary production (Barnes et al., 2011). To account for this, the

position of the median body mass class for phytoplankton (m)

was calculated as:

m ¼ ½ð�6:1 � PsÞ � 8:25�= log10ð2Þ ð1Þ
where Ps is the predicted contribution of picophytoplankton

net production to total net Primary Production (PP) as calcu-

lated using the empirical equation

Ps ¼ ½ð12:19 log10 PPþ 37:248�=100 ð2Þ
derived by Jennings et al. (2008) using the data from Agawin

et al. (2000).

Once the median body mass class of phytoplankton was

defined, we calculated the consumer biomass at body size

following the approach of Jennings et al. (2008). Assumptions

about trophic transfer efficiency and the predator-prey mass

ratio (e = 0.125 and l = 3 respectively) followed Jennings et al.

(2008), but the spectrum was discretized using a log2 series of

body mass from 2�1 to 219 g. Subsequent evidence suggests

that the predator-prey mass ratio may increase with body

mass and that transfer efficiency may decrease, but the

changes are not expected to affect the time-averaged slope of

the size-spectrum (Barnes et al., 2010).

Habitat suitability

The prediction of habitat suitability in SS-DBEM was based on

the algorithm implemented in NSI-DBEM (Cheung et al.,

2008a,b, 2009, 2011; Cheung et al., 2013). The NSI-DBEM

defines the relative preferences of the modelled species for

temperature and other environmental variables based on the

relationship between current distributions and gridded envi-

ronmental data. The initial distribution of relative abundance
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(representing 1970–2000) of the modelled marine species on a

30′ 9 30′ latitude-longitude grid map of the world ocean is

predicted using the Sea Around Us project algorithm (Close

et al., 2006; Jones et al., 2012) based on parameters describing

range limits, association with major habitat types and known

occurrence boundaries. Parameter values for each species

were derived from data in online databases, mainly FishBase

(www.fishbase.org) and SeaLifeBase (www.sealifebase.org).

Environmental variables incorporated into the NSI-DBEM

include sea surface temperature, sea bottom temperature,

coastal upwelling, salinity, sea-ice extent, depth and habitat

types (Cheung et al., 2011). NSI-DBEM first calculates changes

in growth and other life history traits in response to changes

in temperature and oxygen concentration based on algorithms

derived from growth and metabolic functions and empirical

equations (Cheung et al., 2011, 2013). Second, NSI-DBEM pre-

dicts size-frequency distributions for each species in each spa-

tial cell using a size-structured ‘per recruit’ model. Finally, the

model simulates spatial and temporal changes in relative

abundance within a cell based on carrying capacity of a cell,

density-dependent population growth, larval dispersal and

adult migration (Cheung et al., 2008b, 2011).

Species interactions

A new algorithm was developed to describe resource competi-

tion between different species co-occurring in a cell by com-

paring the energy (in biomass) that can be supported in the

cell (estimated with the SS model) with the energy demanded

by the species predicted to inhabit the given cell (estimated

with the NSI model). The algorithm comprises two stages: (i)

an initialization stage where competition parameters are esti-

mated; and, (ii) a recurrent stage where the competition

parameters are used to resolve conflicts between energy (bio-

mass) demands and biomass that can be supported. One

advantage of this approach is that it focuses on competition

for the energy available within a cell, thus negating the need

for a diet matrix that describes species-specific feeding interac-

tions. Data to develop such matrices are scarce at the scale of

FAO Area 27 and the persistence and emergence of feeding

interactions through time, and in response to future climate

change, is highly uncertain.

First stage. The model uses the NSI-DBEM approach to

establish an initial distribution for each species. The approach

assumes that predicted habitat suitability is a proxy for the

distribution of relative abundance of a given species. Thus,

multiplying the initial relative biomass by the estimated abso-

lute biomass from empirical data, initial species distribution is

expressed in terms of absolute biomass in each cell. Because

biomass estimates from assessment data are not available for

some of the species considered (Table 1), the initial biomass

estimates were approximated by the predicted unexploited

biomass (B∞) from maximum reported fisheries catch (MC)

since 1950 and an estimate of the intrinsic growth rate (r) of

the population (Schaefer, 1954):

B1 ¼ MSY � 4=r ð3Þ

Maximum sustainable yield (MSY) was calculated using the

algorithm documented in Cheung et al. (2008a) that used the

average maximum values of the catch time series of a species

as an approximated MSY. Values for r, estimated based on an

empirical equation that was dependent on asymptotic length

of the species, were obtained from FishBase (www.fishbase.

org). Although this is an approximation and not as reliable as

estimates of biomass using survey-based methods (Pauly

et al., 2013), we show that, consistent with similar findings by

Froese et al. (2012), biomass estimates from maximum catch

data were significantly correlated with those from aggregated

stock assessments (Table 1; Fig. 1). These biomass estimates

were used for model initialization only.

The initial absolute biomass estimates, based on habitat

suitability in the cells where they are distributed (Fig. 2), are

used to generate a matrix of species’ energy demand (expressed

as biomass). Matrix elements define the proportion of total

energy obtained by a species at each habitat suitability bin

and size class. The amount of energy is determined by the

average proportion of energy that a species gets in cells with

the same habitat suitability.

Energy demanded (E_D) by a species in a cell is compared

with the total biomass or energy (E_S) that can be supported

in the cell (see Table 2 for a summary of abbreviations). E_D is

determined based on the predicted habitat suitability from the

DBEM algorithm, whereas E_S is determined by the SS model.

Thus, the average proportion of energy that a species demands

in cells with the same habitat suitability can be calculated as

follows:

resoucesSpp;Suit;Size ¼
E DSuit

Spp;w;i

E S
ð4Þ

To convert from biomass (B) distribution to numbers (N) and

vice versa, the mean body mass (W) at each size class (i) is

used as shown below:

B ¼
Xn
i¼1

Ni �Wi ð5Þ

where n is the number of size classes considered in the model.

The initial habitat suitability value is converted using a square

root data transformation, to ensure a balanced distribution of

the cells across the habitat suitability classes, and then normal-

ized to a range from 0 to 1 relative to minimum and maximum

value of habitat suitability for each species. The model then

groups habitat suitability into six classes (bins) of values:

0–0.3, >0.3–0.4, >0.4–0.5, >0.5–0.6, >0.6–0.7 and >0.7–1. The use

of discretized bins of habitat suitability, a nonparametric

methodology, does not require the specification of explicit

distribution functions and is more computationally efficient

(Fayyad & Irani, 1993; Dougherty et al., 1995). The effects of

such discretization are minimized here by square root trans-

formation of the predicted habitat suitability, the low number

of bins and the choice of bin boundaries (Uusitalo, 2007;

Fernandes et al., 2010).

Available energy in a size class which is not demanded by

the modelled species was assigned to a group called ‘Other

groups’, because species that were not modelled explicitly

would also have an energy demand. This group has its own

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 2596–2607
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Table 1 List of modelled fish species. Stocks that have been aggregated to provide species abundance estimates are identified by

their stock ID codes (STOCKID) in the RAM Legacy database (upper case codes). For some ICES assessed stocks not listed in the

RAM Legacy database, stock ID codes that were based on ICES Stock Summary Database were used (lower case codes)

Common name Scientific name Type Stock ID code

Albacore Thunnus alalunga Pelagic ALBANATL

American plaice/

long rough dab

Hippoglossoides platessoides Demersal

Angler Lophius piscatorius Demersal

Atlantic cod Gadus morhua Demersal CODNEAR, CODBA2224, CODBA2532, CODVIa, CODIS,

CODICE, CODNS and CODKAT

Atlantic herring Clupea harengus Pelagic HERRIsum, HERRNS, HERR2224IIIa, HERR2532, HERR30,

HERRRIGA, HERRNIRS, HERRNWATLC, HERR4VWX,

HERR4RFA, HERR4RSP, HERR4TFA, HERR4TSP, HERR31,

her-noss, hervian and her-vasu

Atlantic horse mackerel Trachurus trachurus Pelagic hom-west

Atlantic mackerel Scomber scombrus Pelagic MACKNEICES

Baltic sprat Sprattus sprattus Pelagic SPRAT22-32

Blue whiting Micromesistius poutassou Pelagic whb-comb

Boarfish Capros aper Demersal

Capelin Mallotus villosus Pelagic CAPEICE and CAPENOR

Common sole Solea solea Demersal SOLENS, SOLEVIId, SOLEIS, SOLEIIIa, SOLEVIIe, SOLECS,

and SOLEVIII

Cuckoo ray Leucoraja naevus Demersal

Dab Limanda limanda Demersal

European anchovy Engraulis encrasicolus Pelagic ANCHOBAYB

European hake Merluccius merluccius Demersal HAKESOTH and HAKENRTN

European pilchard Sardina pilchardus Pelagic sar-soth

European plaice Pleuronectes platessus Demersal PLAIC7d, PLAICIIIa, PLAICNS, PLAICIS, PLAICECHW

and PLAICCELT

European sprat Sprattus sprattus Pelagic SPRATNS

Flounder Platichthys flesus Demersal

Fourbeard rockling Enchelyopus cimbrius Demersal

Fourspotted megrim Lepidorhombus boscii Demersal mgb-8c9a

Greenland halibut Reinhardtius hippoglossoides Demersal GHALNEAR, GHALBSAI and GHAL23KLMNO

Haddock Melanogrammus aeglefinus Demersal HAD4X5Y, HAD5Y, HAD5Zejm, HADICE, HADNEAR,

HADFAPL, HADNS-IIIa, HADVIa, HADVIIb-k, HADROCK

and HADGB

John dory Zeus faber Demersal

Lemon sole Microstomus kitt Demersal

Ling Molva molva Demersal

Megrim Lepidorhombus whiffiagonis Demersal mgw-8c9a

Northern bluefin tuna Thunnus thynnus Pelagic ATBTUNAEATL and ATBTUNAWATL

Norway pout Trisopterus esmarkii Demersal nop-34

Golden Redfish Sebastes norvegicus Demersal GOLDREDNEAR

Pearlsides Maurolicus muelleri Pelagic

Piked dogfish/Spurdog Squalus acanthias Demersal

Pollack Pollachius pollachius Demersal

Poor cod Trisopterus minutus Demersal

Pouting/Bib Trisopterus luscus Demersal

Red bandfish Cepola macrophthalma Demersal

Saithe/Pollock Pollachius virens Demersal POLL5YZ, POLLNEAR, POLLFAPL, POLL4X5YZ and

POLLNS-VI-IIIa

Smallspottedcatshark Scyliorhinus canicula Demersal

Splendid alfonsino Beryx splendens Demersal

Spotted ray Raja montagui Demersal

Striped red mullet Mullus surmuletus Demersal
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resource allocation matrix based on the average habitat

suitability of the modelled species, allowing the inclusion of

resource demand from species that are not explicitly

modelled. As the species assemblage in the boundary of the

geographical domain of the model is likely to be underrepre-

sented by the modelled species, the matrix for ‘Others group’

is only computed for cells where the number of species pres-

ent is more than the square root of the total number of species

modelled.

Second stage. Abundance of each species in each cell was

predicted using the algorithm in the NSI-DBEM. The model

runs uses an annual time-step for bottom-dwelling (demersal)

species and two seasonal time-steps (summer and winter) for

species in the water-column (pelagic). The energy demand of

each species is compared with energy demands of other spe-

cies co-occurring in the same cell (Fig. 2). If the energy

demanded by all organisms in the cell exceeds the energy

available, then the available energy is allocated to each species

in proportion to its energy demands. If the energy demanded

by all the species is lower than the energy available, the sur-

plus energy is allocated according to the proportional energy

demand of the species present, including the ‘Others group’. To

represent population growth that is limited by factors other

than available energy, the rate at which energy can be assimi-

lated by a species is limited as shown below:

res opSpp;Suit;W ¼ 2 � std.devðE DSuitÞ
meanðE DSuitÞ ð6Þ

where, E_DSuit denotes the energy demanded in all the cells in

each bin of habitat suitability. Therefore, the amount of addi-

tional energy that can be taken by the species is limited by

two times the standard deviation (std.dev) of energy that each

species gets in the initial distribution to each habitat suitability

bin. Any energy that is left after these allocations is assumed

to be used by the ‘Others group’.

Model testing

The results from the model that includes competition were

compared with results from the NSI-DBEM and “empirical”

time series of abundance data from fish stock assessments for

the Northeast Atlantic (FAO area 27), as extracted from the

RAM Legacy Stock Assessment Database (Ricard et al., 2012;

http://ramlegacy.marinebiodiversity.ca/) and ICES Stock

Summary Database (http://www.ices.dk). To compare pro-

jected changes with observations, abundance data for each

species were normalized by dividing them by their mean

value. While the models were applied to a set of 48 fish spe-

cies, comparison with empirical data was conducted for 24

species for which data were available from the RAM Legacy

and ICES databases (Table 1). The output of the DBEM mod-

els were compared with the “empirical” time-series values for

each species and distribution of absolute error (AE) was calcu-

lated as follows:

AE ¼ jpj � xjj ð7Þ

where p is the total biomass predicted in a DBEM model in

a particular year for a species j, and x is the total biomass

from the assessments. The comparison was done for the

years with available assessment data for all the 24 species

considered (1991–2003). To compare the performance of the

SS-DBEM and NSI-DBEM, the Percent Reduction in Error

(PRE) was calculated (Hagle & Glen, 1992; Fernandes et al.,

2009), but weighted by the maximum catch of each species

(WPRE):

Table 1 (continued)

Common name Scientific name Type Stock ID code

Thickback sole Microchirus variegatus Demersal

Thornback ray Raja clavata Demersal

Tub gurnard Chelidonichthys lucerna Demersal

Tusk/Torsk/Cusk Brosme brosme Demersal CUSK4X

Whiting Merlangius merlangus Demersal WHITNS-VIId-IIIa, WHITVIa and WHITVIIek

Witch Glyptocephalus cynoglossus Demersal

Fig. 1 Relationship between the maximum assessed biomass

(log) and the estimated carrying capacity of fish population (B∞,

log) for 22 species in the 27 FAO area (after removing extreme

values, the lowest and highest B∞).
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WPRE ¼ 1Pl
k¼1 MaxCatchk

Xl

k¼1

100ðAENSIk �AESSkÞ
AENSIk

� �

�MaxCatchk

ð8Þ
where AENSI is the absolute error in the NSI-DBEM model,

AESS is the absolute error in the SS-DBEM model, k the

number of species and MaxCatch the maximum catch of the

species.

These models were also compared with empirical data

describing latitudinal and depth centroid shifts of species in

response to climate change (Dulvy et al., 2008; Cheung et al.,

2011). Distribution centroid (DCt) for each year (t) was calcu-

lated as:

Dynamic bioclimate envelop model
Cheung et al., 2008; 2009; 2011

Size distribution for each species

Size spectrum model
Jennings et al., 2008

Earth system models
ERSEM, GFDL, ...

Biomass supported
at each size bin

Ram Legacy Stock Assessment database
ICES Stock Summary database

Algorithm for
species interactions

Size distribution for each species

Primary production

Temperature

LINK BETWEEN MODELS
Species interactions table

         Taxa 
parameters

Species
distribution

Algorithm pseudocode for species interactions
                      

1:  Calculate  =

                            
>

       

3:   TotalResW, i = 

                               

4:   If  TotalResW, i< 1 then = ·
5:   If  TotalResW, i> 1 then   Normalize:  TotalResW, i 

6:   If >   then =
7:   Adjust biomass, abundance and size distributions based on 

2: then   =  / E_SW,iIf

Initial
biomass

Relative
distribution
across cells

Size
distribution

Total biomass
supported at
each size bin
in each cell

% resources demanded
at each size bin

Habitat
suitability
in each cell

Species interactions table for each species:
i.e. % resources demanded at each
size bin by habitat suitability

Temperature

Salinity
Advection

Other
FishBase

SeaAroundUsBase
Species
initial
biomass

Fig. 2 Framework to calculate the matrix of energy demand at each size class for each species and to calculate the effects of species

interactions.

Table 2 Summary of abbreviations

Abbreviation Description Details

DBEM Dynamic Bioclimate Envelope Model

E CSuit
Spp;w;i Biomass by competition resSuitSpp;w;i � E S

E DSuit
Spp;w;i Biomass demanded Calculated at each yearly shift

ERSEM European Regional Seas Ecosystem Model

E_Ssize,i Total biomass supported in a cell Calculated from Primary production

GFDL Geophysical Fluid Dynamic Laboratory Earth System model

I Index of cell From 0 to 250 200

NSI No species interactions

resSuitSpp;w;i Actual proportion of resources by competition See Fig. 2

resSpp,Suit,w Proportion resources at matrix of energy demand See Eqn (4)

Res-opSpp,Suit,w Proportion of resources by opportunity See Eqn (6)

Spp Index of species From 0 to 48 species

SS Size-spectrum (based interactions)

Suit Index of the habitat suitability bin Between 0 and 4 bins

TotalResW, i Total proportion of resources demanded
P

Spp resSuitSpp;w;i

W Index of the size spectrum 21 log2 classes from 2�1 to 219

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 2596–2607
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DCt ¼
Pn

i Bt;i � Ai � LatiPn
i Bt;i � Ai

; ð9Þ

where, Bi is the predicted relative abundance in cell i, A is the

area of the cell, Lat is the latitude at the centre of the cell and n

is the total number of cells where the species was predicted to

occur. We calculated the rate of range shift as the slope of a

fitted linear regression between the distribution centroid of

the species and time. We expressed latitudinal range shift (LS)

as poleward shift in distance from the equation:

LS ¼ DS � p=180 � 6378:2; ð10Þ
where DS is the distribution shift in degree latitude per year.

The models were run for 35 years, from 1970 to 2004, with

environmental forcing predicted from two modelling systems:

(i) the National Oceanographic and Atmospheric Administra-

tion Geophysical Fluid Dynamic Laboratory Earth System

Model (ESM) 2.1 (GFDL); and (ii) the European Regional Seas

Ecosystem Model (ERSEM). GFDL ESM2.1 is a global atmo-

sphere-ocean general circulation model (Delworth et al., 2006)

coupled to a marine biogeochemistry model (TOPAZ; Dunne

et al., 2010) which includes major nutrients and three phyto-

plankton functional groups with variable stoichiometry. For

the GFDL hindcast simulations (Henson et al., 2010), air tem-

perature and incoming fluxes of wind stress, freshwater,

shortwave and longwave radiation are prescribed as bound-

ary conditions from the CORE- version 2 reanalysis effort

(Large & Yeager, 2009). ERSEM is a biogeochemical model

that uses a functional-groups approach incorporating four

phytoplankton and three zooplankton functional groups and

decouples carbon and nutrient dynamics (Blackford et al.,

2004). Data from two different configurations of ERSEM were

applied here: on the global scale a hindcast of the NEMO-ER-

SEM model forced with DFS 4.1 reanalysis for the atmosphere

(Dunne et al., 2010) and on the regional scale a hindcast of the

POLCOMS-ERSEM model for the NW-European shelf forced

with ERA 40 reanalysis (extended with operational ECMWF

reanalysis until 2004) for the atmosphere and global ocean

reanalysis for the open ocean boundaries (more details on the

configuration can be found in Holt et al., 2012; Artioli et al.,

2012). The domain of this global model overlapped the

domain of a regional model of the North Sea area.

Results and discussion

Performance of SS-DBEM and NSI-DBEM

Predicted biomasses from SS-DBEM were generally

lower than those projected from NSI-DBEM (Fig. 3).

The reason is that the energy available from primary

producers limits species’ biomass in SS-DBEM but not

in NSI-DBEM, where species’ carrying capacity depends

mainly on the habitat suitability of the cell. The algo-

rithm in SS-DBEM explicitly modelled interspecific

competition for energy, based on size considerations,

without specifying these interactions (e.g. no diet matrix).

Our approach allows for the development of scenarios

of large-scale shift in species distribution and catches,

complementing other models that have been designed

to achieve this (Cheung et al., 2010; Metcalfe et al.,

2012).

Outputs from SS-DBEM explain slightly more of the

variation in biomass estimated from stock assessments

(FAO area 27) than those from the NSI-DBEM. The

error weighted by maximum catch predicted across

species from SS-DBEM against empirical data is 3.7%

lower than those predicted from NSI-DBEM using

GFDL environmental forcing data and 0.6% lower

using ERSEM data. GFDL might be more accurate

(Fig. 4) for the time period considered since the model

run was forced by re-analysis data such as surface

Fig. 3 Species biomass by body mass class supported in a single coastal cell (30′ 9 30′), used as an example. Open circles represent the

biomass that can be supported in this cell using only the size-spectrum component of the model.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 2596–2607

2602 J . A. FERNANDES et al.



temperature and wind fields, which is not the case for

ERSEM. However, the differences in mean absolute

error are not significant and might not hold when the

models are used for forecasting. Future work will

explore the causes of this difference, which may not

depend on the modelling itself but on input data such

as environmental forcing, or even on the adequacy of

the assessment data used for the comparison. Finally, a

lower variance in the absolute error in SS-DBEM with

respect to NSI-DBEM model (Fig. 4) is indicative of a

higher precision of simulated biomass from SS-DBEM

(Taylor, 1999). This also supports the view that the pro-

posed modelling approach is a potential advance over

models that do not account for species interactions.

Distribution shifts

Both NSI-DBEM and SS-DBEM projected poleward lati-

tudinal shift of species distributions (Fig. 5), and the

projected shifts are generally consistent between simu-

lations forced by the two sets of Earth System Model

outputs (Table 3). In addition, the projected shift of

pelagic species by the model with interactions is consis-

tently lower than if no interactions are considered

(Table 3). With ERSEM forcing, the median projected

rates of poleward shift are 63.5 km and 54.9 km over

35 years, or 18.1 and 15.7 km decade�1, from NSI-

DBEM and SS-DBEM respectively. Similar to previous

analysis using NSI-DBEM, all sets of simulations show
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Fig. 4 Distribution of absolute error of predicted biomass for SS-DBEM and NSI-DBEM and the biomass estimated from stock assess-

ments for the 1991–2003 period in the Northeast Atlantic (FAO Area 27). The time series have been normalized between 0 and 1 before

calculating the absolute error, to ensure that species’ absolute abundances do not affect the results. The comparison is presented for

European Regional Seas Ecosystem Model (ERSEM) (left) and Geophysical Fluid Dynamic Laboratory (GFDL) (right) showing in the

legend mean and standard deviation of the absolute error. A narrower distribution of error (lower standard deviation) in SS-DBEM is

indicative of a higher precision.
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Fig. 5 Predicted latitudinal shift of distribution centroids of 49 species of fishes from 1971 to 2004 using European Regional Seas Eco-

system Model (ERSEM) climatic dataset for the NSI-DBEM and SS-DBEM. The thick dark bar represents the median shift of all the spe-

cies in a year, the lower and upper boundaries of the box represent the 25% and 75% quartiles respectively. Positive value indicates

poleward shift relative to species distribution in 1971.
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a higher rate of range shift for pelagic species than

bottom-dwelling species (Cheung et al., 2009; Jones

et al., 2013). A reduction in the expected geographical

shift of particular populations as a result of ecological

interactions is consistent with the perception of

compensatory ecological processes (Frank et al., 2011).

Shifts in depth are also observed and are strongly dri-

ven by the forcing model considered. The shift in depth

is also dependent on the spatial domain considered.

For example, for demersal species in FAO Area 27, out-

puts from SS-DBEM driven by ERSEM data project a

shift to deeper waters of 1.3 m decade�1. However,

when we consider North Sea only, the projected shift to

deeper waters is higher at 5.7 m decade�1.

The slower rates of projected shifts from the

SS-DBEM relative to NSI-DBEM are consistent with

previous literature based on recent observations.

Specifically, Perry et al. (2005) projected a mean rate of

latitudinal shift of 22 km decade�1 from 1980 to 2004 in

the North Sea for six fish species. Comparable rates

of shift (between 18.5 and 18.8 km decade�1) are

projected here for our modelled subset of species,

which includes four of these species (bib, blue whiting,

Norway pout and witch). Also, Dulvy et al. (2008) esti-

mated that bottom-dwelling species were moving into

deeper waters at an average rate of 3.1 m decade�1

from 1980 to 2004 (19 species of 28 species are common

between this study and Dulvy et al., 2008), which is

slower than our prediction of 5.7 m decade�1. These

direct comparisons between predicted and observed

shifts need to be interpreted with caution because of

differences in the species included, the spatial domains,

and the time period considered. In addition, our simu-

lations represent average species-level changes without

consideration for stock structure, owing to incomplete

biological data to address the latter. The trend in abun-

dance or range shift of a given species may not neces-

sarily be equivalent to that of every stock of that species

(Petitgas et al., 2012).

Maximum catch

The maximum catch predicted by both DBEM models

(SS and NSI) broadly follows multi-decadal variability

in empirical estimates of total catches for the 1970–2004
time period in the ICES areas (Fig. 6). This is demon-

strated by maximum and minimum points in similar

years, with the highest discrepancy in years around

1985. All the time series show higher maximum values

in the first half of the time period and consistently

lower maximum values in the second half. However,

this negative trend in catches in all the time series is not

statistically significant. The empirical catch data are

aggregated catches by all species reported in ICES areas

as collected in the Eurostat/ICES database on catch sta-

tistics (http://www.ices.dk). The predicted maximum

catch is based on the aggregation of the potential catch

of the 48 modelled species in ICES areas. Despite some

Table 3 Average latitudinal shift in different simulations.

NSI corresponds to simulations where the model does not

incorporate species interactions through the size-spectrum,

whereas SS denotes the use of the species interactions algo-

rithm. Geophysical Fluid Dynamic Laboratory (GFDL) and

European Regional Seas Ecosystem Model (ERSEM) corre-

spond to two different Earth System Models

Latitudinal Shift (km decade�1)

Projection All species Demersal Pelagic

NSI-DBEM GFDL 16.7 14.1 26.0

SS-DBEM GFDL 13.7 12.6 18.4

NSI-DBEM ERSEM 18.1 15.2 28.2

SS-DBEM ERSEM 15.7 15.3 16.9

Fig. 6 Predicted changes in maximum catch compared with empirical catch data. Time series has been normalized between 0 and 1 to

compare interannual variability.
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discrepancies, the models are able to reproduce general

trends in observed fisheries productivity in the North

East Atlantic, providing some confidence in their utility.

Catches predicted from SS and NSI approaches show

similar patterns when the most abundant and commer-

cially important species are aggregated. Further work

will focus on examining the effects of different model-

ling approaches on catch predicted for specific species,

areas (e.g. ICES areas) or size classes.

Model uncertainty

Projections from NSI- and SS-DBEM are sensitive to the

environmental variables projected by the Earth System

Models and used to force the ecological models. Earth

System Models have a number of limitations when

applied to fisheries problems (Stock et al., 2011). Their

resolution is relatively coarse to capture ecological pro-

cesses (generally ca. 1 degree in the ocean) and they

also do not capture well the coastal and continental

shelf ocean dynamics. As a result, Earth System Models

are known to systematically project lower primary

production in coastal areas (Steinacher et al., 2010).

Inter-model spread arises from diverse sources, such as

the parameters chosen for sub-grid-scale parametriza-

tions. In addition, there is overall limited availability of

reliable data to calibrate the models. Efforts to improve

the understanding and projections for primary produc-

tion are ongoing (e.g. Holt et al., 2012; Krause-Jensen

et al., 2012), which will likely contribute to improved

performance of DBEM models.

An assumption of the size-spectrum component of

the model is the linear relationship between log-abun-

dance and log-body size classes in the cell. Such an

assumption is made mainly for computational perfor-

mance. In reality, it may be violated by species’ migra-

tions that lead to energy losses and subsidies from

given cells, and by seasonal fluctuations in primary

production (Blanchard et al., 2011).

The relative abundance of individuals at size can be

modified by the overall constraints on energy availabil-

ity. In general, these have limited effect on the projec-

tions because the changes account for a small

percentage of the total abundance of species in the cell

(an average of 0.03% of abundance decrease). However,

the effects are larger and occur in more cells for whit-

ing, blue whiting, Atlantic cod, Norway pout, European

plaice, saithe and Atlantic horse mackerel.

The DBEM modelling approaches have a number of

inherent assumptions and uncertainties that may affect

the performance of the models (Cheung et al., 2009).

First, the models are based on the assumption that

the predicted current species distributions depict the

environmental preferences of the species and are in

equilibrium. Second, the underlying biological hypoth-

esis, represented by the model structure and input

parameters, may be uncertain. Moreover, the models

did not consider the potential for phenotypic and

evolutionary adaptations of the species. As these

assumptions apply to both NSI- and SS- DBEM, they do

not affect the comparison of projections between the

two models. We used theory and empirical data to

model trophic interactions. The modelling approach

does not incorporate the full range or complexity of

interactions among species. This simplification avoids

the difficulties of formalizing transient and complex

species-specific predatory interactions at large-scales. It

also requires no assumptions about the extent to which

species-specific trophic interactions that are seen today

will persist in the future. Furthermore, at the system

level, size-based processes account for much of the

variation in prey choice and trophic structure.

Survey data can provide an alternative way of vali-

dating model outputs (Simpson et al., 2011). However,

there are scale reasons why we did not pursue this type

of validation in this study. Fisheries surveys tend to

focus on particular species assemblages (e.g. pelagic or

bottom-dwelling species), and are designed to provide

a geographical and temporal snapshot that fits with the

life history of target species. As such survey data are

not directly comparable to model outputs for a large

geographical area (FAO area 27).

There are small but quantifiable improvements in

goodness-of-fit with stock assessment abundance esti-

mates, predictions of latitudinal shifts and comparisons

with predicted maximum catch and observed catches.

However, we need to be cautious about our interpreta-

tions of model performance at this stage owing to struc-

tural and parameter uncertainties, and uncertainties in

the models used to generate the environmental forcing.

The similarity of predictions might reflect incorrect

assumptions. For example, we assume that single spe-

cies models do not account for species interaction

because there is no explicit mechanism, even though

species interactions might already be implicitly incor-

porated in its parameterization (e.g. habitat suitability

calculation from observed distribution data). The simi-

larity of predictions might also be attributed to the simi-

lar effects of changing climate on many predators and

competitors and the implicit assumption of the NSI-

DBEM approach that the importance of interspecific

interactions remains the same. In addition, trophic

interactions might not be the main driver of responses

to climate at the basin scale. However, our results at the

scale of the North Atlantic basin, or aggregated ICES

areas, does not mean that trophic interactions may not

have more influence on regional and local responses.

Unfortunately, the earth system and ecological models
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described in this article are too complicated to allow

comprehensive explorations of the effects of changing

model structures and parameterisation. Such explora-

tions could be achieved in the long-term by comparing

projections from the DBEMs with alternative parameter

settings for larger datasets of time series of changes in

distribution and abundance from different ocean

regions.

The main benefit of our model comes from unifying

two modelling approaches providing spatially and tem-

porally resolved species and size predictions, with full

consideration for the effects of ecological interactions.

Future development of the DBEM will also attempt to

incorporate other key biological processes that are

likely to be important in determining the responses of

marine fishes and invertebrates to climate change. Our

model has provided new insight into the effects of

ecological interactions on responses to climate and

provides a new tool for further exploring the effects of

future climate change. Predictions, in conjunction with

those from other models, will inform managers about

the range of possible ecological and fishery responses

to a changing environment, thus supporting the devel-

opment of management systems that take account of

the effects of climate change (Perry et al., 2011) and the

ongoing implementation of an ecosystem approach to

fisheries (Garcia & Cochrane, 2005; Rice, 2011). Predic-

tions of the long-term effects of climate currently need

to be considered alongside those used for operational

management, to prepare policy makers and fisheries

governance systems for changes in target fisheries and

dependent communities and economies (Perry et al.,

2011).
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