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Marine heatwaves are not a dominant driver 
of change in demersal fishes

Alexa L. Fredston1 ✉, William W. L. Cheung2, Thomas L. Frölicher3,4, Zoë J. Kitchel5, 
Aurore A. Maureaud5,6, James T. Thorson7, Arnaud Auber8, Bastien Mérigot9, 
Juliano Palacios-Abrantes2, Maria Lourdes D. Palomares10, Laurène Pecuchet11, 
Nancy L. Shackell12 & Malin L. Pinsky5,13

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. 
If marine heatwaves regularly induce community reorganization and biomass 
collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries 
and human communities3,4. However, the extent to which marine heatwaves have 
negative impacts on fish biomass or community composition, or even whether their 
effects can be distinguished from natural and sampling variability, remains unclear. 
We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine 
fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of 
continental shelf ecosystems in North America and Europe spanning the subtropics  
to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were 
often minimal and could not be distinguished from natural and sampling variability. 
Furthermore, marine heatwaves were not consistently associated with tropicalization 
(gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in 
these ecosystems. Although steep declines in biomass occasionally occurred after 
marine heatwaves, these were the exception, not the rule. Against the highly variable 
backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or 
community turnover in fish communities that support many of the world’s largest and 
most productive fisheries.

Extreme climatic events exacerbated by global climate change are 
associated with many examples of ecological transformation5. Marine 
heatwaves(MHWs)—6 prolonged periods of anomalously warm ocean 
temperatures—have been linked to widespread coral bleaching and 
die-offs of kelp forests and reef fishes in shallow coastal seas1,2. MHWs 
can rapidly displace some marine species by hundreds of kilometres and 
cause abrupt declines in phytoplankton and commercially important 
species7–9. These high-profile catastrophes and those emerging from 
regional and global model simulations predict that MHWs are likely 
to wreak ecological devastation and negatively affect socio-economic 
systems3,4,10. However, accurate predictions must rely on generaliz-
able patterns and processes, not case studies with limited spatial and 
taxonomic scope. The extent to which MHWs in general have negative 
ecological impacts, or even whether they can be differentiated from 
other sources of natural and sampling variability in marine systems, 
remains unclear. In the few studies that have compared responses to 
MHWs across several species within the same ecosystem, some species 
declined whereas others thrived11–13, suggesting that single-species 

responses do not accurately show net ecological effects. These net 
effects are particularly important to understand in continental shelf 
ecosystems, where many of the world’s largest ocean fisheries operate14.

Here, we analysed the cross-species and cross-ecosystem effects of 
MHWs in Northern-Hemisphere shelf ecosystems from the subtropics 
to the Arctic. We analysed 82,322 hauls (discrete samples) comprising 
22,574,452 observations of 1,769 demersal fish taxa from 18 long-term 
scientific (that is, fisheries-independent) bottom trawl surveys cover-
ing 45 degrees of latitude in the northeast Pacific, northwest Atlantic 
and northeast Atlantic (Fig. 1). Ninety per cent of hauls occurred in 
waters 18–451 m deep. These surveys represent the most spatially, 
temporally and taxonomically extensive observations available for 
testing MHW effects. We examined observations from 1993 to 2019 to 
quantify the effects of MHWs on regional fish biomass and community 
composition (Fig. 1).

We defined a MHW as a period of five days or more with sea-bottom 
temperature (SBT) anomalies above the seasonally varying 95th per-
centile for that region6 and used cumulative intensity as the primary 

https://doi.org/10.1038/s41586-023-06449-y

Received: 3 August 2022

Accepted: 18 July 2023

Published online: xx xx xxxx

 Check for updates

1Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA. 2Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, 
Canada. 3Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland. 4Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland. 
5Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. 6Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. 
7Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA. 8Institut Français de Recherche pour l’Exploitation 
de la MER (Ifremer), Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France. 9MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France. 10Sea 
Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada. 11The Arctic University of Norway, Tromsø, Norway. 12Bedford Institute of 
Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada. 13Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA. 
✉e-mail: fredston@ucsc.edu

https://doi.org/10.1038/s41586-023-06449-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06449-y&domain=pdf
mailto:fredston@ucsc.edu


2 | Nature | www.nature.com

Article

metric characterizing MHWs (Methods). Cumulative intensity is meas-
ured in °C-days and represents the sum of the time-varying anomalies 
above the 95th percentile threshold over the duration of the event. 
This approach—defining MHWs as physical phenomena on the basis of 
relative temperature anomalies—is widely applied in oceanography15. 
A contrasting approach is to define absolute temperature thresholds 
above which deleterious ecological impacts consistently occur, as 
have been identified for coral reefs16. Such a biological threshold has 
not been described in most marine systems, including the ones we 
studied, so we explored a range of relative and absolute MHW metrics 
(Methods). We proposed that MHWs altered fish biomass and com-
munity composition and that these effects would increase with the 
cumulative intensity of MHWs.

This dataset recorded some notable MHW impacts that mirror 
previous reports in the literature, including a 22% biomass loss in the 
Gulf of Alaska following the 2014–2016 northeast Pacific MHW with a 
cumulative intensity of 57 °C-days (refs. 8,12) and a 70% biomass gain in 
northeast USA following the 2012 northwest Atlantic MHW (67 °C-days; 
Figs. 2a and 3a)11. However, it is important to note that, although these 
effects were substantial, they were neither large, compared with natu-
ral variability in biomass, nor repeated across other previously unre-
ported MHWs. Other intense MHWs had little discernible effect on total 
biomass, such as the 42 °C-days MHW preceding the 2008 North Sea 
survey that recorded a biomass decline of only 6% (Fig. 2a). Some of 

the largest biomass changes occurred in non-MHW years, such as the 
97% increase in biomass in the North Sea in 2011 or the 77% biomass 
decline in the southeast USA in 199617.

In addition, we observed that the most extreme biomass changes 
were often reversed in subsequent years. For example, the southern 
Gulf of St. Lawrence survey hauls caught an average of 4 metric tons of 
fish per km2 in 2011, a non-MHW year; 13 metric tons per km2 in 2012 fol-
lowing a 36-°C-days MHW; and 4 metric tons per km2 in 2013 following 
a MHW with 0.4 °C-days of cumulative intensity (Fig. 2a). The peak in 
biomass in 2012 was driven by Atlantic herring (Clupea harengus) and 
probably reflects a combination of survey variability and a true peak 
in population size of the autumn Atlantic herring stock in the region18.

Contrary to our expectations, both among surveys that were and 
those that were not preceded by a MHW, the median change in biomass 
was close to zero (0.023 ± 0.367 and 0.016 ± 0.323, respectively; medi-
ans and standard deviations of log ratios), indicating that regions were 
approximately as likely to exhibit net biomass gains as losses (Fig. 2a). 
Of the 369 survey-years we matched with SBT data, 139 followed MHWs 
and 230 did not. There was no significant difference in mean biomass 
change between surveys that were and those that were not preceded by 
a MHW (P = 0.40, t = 0.85, d.f. = 249; two-sided t-test; Fig. 2a). Further-
more, the cumulative intensity of a MHW had no significant relationship 
to the change in biomass (linear regression; R2 = 0.00; P = 0.88; Fig. 2 
and Supplementary Table 2).
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Fig. 1 | Of 18 regions studied from the Atlantic and Pacific Oceans, all 
experienced MHWs during the available scientific fish survey time series. 
Highlighted areas on the map represent the spatial area surveyed by each trawl 
survey. Inset plots show the number of distinct sampling events (that is, hauls 
of the trawl net) every year (grey bars, right y axis) and the MHW cumulative 

intensity in °C-days calculated from SBT data (lines, left y axis; warmer colours 
represent greater cumulative intensity). Years correspond to ‘survey reference 
years’—the 12 months preceding the survey—rather than calendar years and 
vary among regions (Methods).
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The ecosystems we studied have distinct climates, species assem-
blages and histories of anthropogenic pressures19, and might respond 
at different rates and in different directions to environmental perturba-
tion20. More broadly, pulse disturbances and other exogenous drivers 
(including heatwaves) are often expected to increase variance in the 
biomass of populations and communities21. However, we find no sta-
tistically significant relationship between the cumulative intensity of 
a MHW and biomass change of these demersal fish assemblages in any 
individual region (Extended Data Fig. 1 and Supplementary Table 3). 
Across all surveys, variability—measured as the absolute value of the 
year-over-year biomass log ratios—did not increase with MHW cumu-
lative intensity (linear regression, R2 = 0.00, P = 0.24; Fig. 2b and Sup-
plementary Table 4). Instead, we find that variability in biomass change 
from one year to the next is similarly high with MHWs as it is without 
MHWs (0.22 ± 0.248 and 0.19 ± 0.214, respectively; medians and stand-
ard deviations of absolute log ratios) and that these absolute log ratios 
of biomass are not significantly different (P = 0.24, t = 1.17, d.f. = 245; 
two-sided t-test; Fig. 2b).

Accounting for latitude, depth, temporal lags, autoregression in the 
biomass time series, fisheries catch and species traits (feeding mode, 
trophic level and habitat) also did not show any meaningful effect sizes of 
MHWs on biomass (Supplementary Tables 6–10 and Extended Data Figs. 6 
and 7). Our results were also robust to the metric used (cumulative inten-
sity, duration, intensity or heating degree-days) to characterize MHWs, 
to how cumulative intensity was scaled and to whether SBT data were 
detrended (Extended Data Fig. 2 and Supplementary Table 5). Because 
SBT data were available from only 1993 onward, we also analysed a longer 
time series of sea surface temperature (SST) that began in 1982, and thus 
could be paired with additional fish surveys. The SST analysis included 
100,877 hauls comprising 26,886,245 discrete taxon observations, and 
yielded results that were qualitatively similar to the SBT results described 
in the main text (Extended Data Fig. 2b). Because deleterious heatwave 
effects have often been recorded in summer1, we also tested for an effect 
of summer-only MHWs on biomass (Extended Data Fig. 2g), finding a weak 
positive effect (that is, greater biomass following more intense MHWs; 
linear regression, R2 = 0.02, P = 0.02). Although we interpret this result 
cautiously given the high leverage of a few data points, it is consistent 
with the 2012 northwest Atlantic MHW that occurred in summer and was 
associated with an increase in biomass in numerous fisheries11.

Individual MHWs may lead to rapid ecological turnover by causing 
cold-affiliated species to decline or go locally extinct (‘deborealization’)  
and/or by causing warm-affiliated species to spread or increase  
(‘tropicalization’)22–24. We tested whether tropicalization or debore-
alization are general effects of MHWs by calculating the community 
temperature index (CTI) for each survey in each year and comparing CTI 
change to MHW occurrence and cumulative intensity (Methods). CTI is 
an aggregate thermal niche index for the entire community calculated as 
the biomass-weighted mean of single-species’ realized thermal niches25.

Other studies show that CTI has increased in North Atlantic and Pacific 
fish communities in recent decades, concomitant with ocean warming24. 
To explore whether MHWs induce CTI increases, we first focused on  
the 2014–2016 northeast Pacific MHW, nicknamed ‘The Blob’—one  
of the largest MHWs in our dataset (Fig. 3). Of the four regions  
in the northeast Pacific for which we had data, the Gulf of Alaska exhib-
ited the most pronounced CTI increase after the 2014–2016 MHW: from 
7.25 °C in 2013 to 7.39 °C in 2015 and 7.50 °C in 2017. We also found a CTI 
increase in the West Coast of the USA in 2015 following an 8 °C-days SBT 
MHW (CTI change 0.11 °C), consistent with findings that warm-affiliated 
subtidal fishes increased in Southern California that year26. However, 
CTI in the eastern Bering Sea decreased by 0.22 °C from 2015 to 2017. 
In British Columbia, we measured CTI values of 8.34 °C in 2013, 8.10 °C 
in 2015 and 8.31 °C in 2017 (Fig. 3b).

Our analysis found no evidence for systematic tropicalization or 
deborealization in marine fish communities across all 18 surveys 
and 369 survey-years in response to MHWs (Fig. 4). Year-over-year 
CTI change in communities that did not experience MHWs was 
not significantly different from those that did (0.024 ± 0.996 and 
0.007 ± 0.983 °C, respectively; means and standard deviations; P = 0.87, 
t = 0.16, d.f. = 280; two-sided t-test; Fig. 4b). Furthermore, there was 
no relationship between MHW cumulative intensity and CTI change 
(R2 = 0.00; P = 0.33; linear regression; Supplementary Table 11).

MHWs may restructure ecological communities in ways other than 
tropicalization and deborealization27. Less predictable changes in spe-
cies identity and underlying community structure could also emerge 
despite consistent biomass28. We tested for changes in community 
composition by calculating dissimilarity over the time series using 
occurrence data (that is, species presence–absence) and biomass data. 
Each of these dissimilarity indices was calculated from one year to 
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the next using two components: one measure of how much species 
are substituted for one another and one measure of how much each 
community is a subset of the other29 (Methods). A high dissimilarity 
value between two years may be driven by a transition away from the 
baseline community structure as a result of disturbance, which has been 
observed in marine systems in response to climate change28.

In some instances, fish communities exhibited high dissimilarity from 
the previous year following a MHW, such as in the eastern Bering Sea  
and the West Coast of the USA during the 2014–2016 MHW (Fig. 3c). How-
ever, this was not a general effect. We found that community dissimilarity  
measured between consecutive years was not, on average, significantly 
different regardless of whether a MHW had occurred when measured 
with occurrence-based substitution (P = 0.12, t = 1.57), biomass-weighted 
substitution (P = 0.99, t = −0.02) or biomass-weighted subset (P = 0.32, 
t = 1.00; all two-sided t-tests; Extended Data Fig. 8). The one statisti-
cally significant relationship suggested that the subset component of 
occurrence-based dissimilarity was smaller after MHW years than after 
non-MHW years (P = 0.01, t = −2.52, two-sided t-test; Extended Data 
Fig. 8b), the opposite of the proposed effect. This observed community 
stability in the face of MHWs could indicate that climate refugia, such as 
depth refugia or other thermal refugia, provide safe havens for species 
during extreme events30. Furthermore, changes in community structure 
at the local scale may not be reflected at the regional scale of our analysis.

This array of results indicates that the regional impacts of MHWs on 
fish communities are highly idiosyncratic, with pronounced effects in 
single cases, but not in general. In particular, the effects of MHWs do 
not yet exceed natural variability in these ecosystems, or the variability 
due to the sampling process. These results also highlight the need to 
further explore context-dependent responses31. Species and spatial 
portfolio effects32,33, and spatial and temporal storage effects34, may 
explain individualistic responses to extreme events that could buffer 
many ecosystems from MHWs. Range shifts and mortality and fecun-
dity rates may vary with latitude24, although we did not find a latitude 
effect in our analysis (Supplementary Table 8). Interspecific variation 
in the timing, magnitude and direction of MHW response may also be 
important35. For example, population dynamics of abundant species 
in response to the environment and fishing drive some of the biomass 
changes we observed (Extended Data Fig. 10). Ecological responses to 
warming may also be mediated by direct and indirect effects of other 
human impacts on the oceans, such as fishing, fisheries management 
and changing primary productivity3.

To verify that our dataset had sufficient statistical power, we devel-
oped a series of power analyses. First, we estimated that our dataset 
(n = 369 survey-years paired with SBT data) had the power to show 
a consistent MHW-induced regional fish biomass decline of 9% or 
greater (Extended Data Fig. 9c). Using the longer time series of 441 
survey-years that we paired with SST data had the power to detect a 
biomass decline of 8% or greater (Extended Data Fig. 9d). Such an effect 
did not emerge from the results of this study, suggesting that any MHW 
effects are smaller than this. We note that even a decline in fish biomass 
of 8–9% or less, if permanent and sustained over time, would probably 
have substantial deleterious consequences for marine fisheries and 
social-ecological systems3. One model simulation of marine fishes expe-
riencing MHWs under the high-emission, no-mitigation future climate 
scenario (Representative Concentration Pathway 8.5) projected that 
the negatively affected stocks (roughly three-quarters of total stocks) 
would exhibit an average biomass decline of 6%3. Approximately 600 
survey-years would be required to detect an average biomass decline 
of 6% (Extended Data Fig. 9a,b). Put another way, MHWs may have had 
effects on demersal fish communities in recent decades, but if so, those 
effects were small.

In addition, there are alternative explanations to consider. MHWs 
may affect survey methods themselves: a study on several coral trout 
species found that they were more catchable—that is, encountered 
by fishing gear at higher rates—in warmer temperatures36. However, 
if this response was widespread among the species we studied, it 
would cause an increase in biomass following MHWs, which we did 
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not observe. The availability of fishes to surveys can also be influenced 
by range shifts, possibly induced by MHWs37. However, our analysis 
accounted for this by testing for tropicalization or deborealization 
within fixed spatial areas (the survey regions). Because biomass trends 
may be strongly structured by commercial fisheries’ catches, we fitted 
models predicting biomass change with fisheries’ catches as well as 
MHW cumulative intensity, with no significant results (Supplementary 
Table 10). Although the choice of metric to quantify MHWs6,15,37,38 and 
fish community responses11,36 may influence results, our results here 
were not sensitive to these decisions. The pattern in Fig. 2 emerged 
regardless of whether we analysed fish biomass (that is, weights) or 
fish abundance (that is, counts) or whether taxon-level records were 
summarized as means or medians (Extended Data Fig. 5). The spatial 
scale of our study was determined by the surveys, which themselves 
are designed to capture distinct biogeographical and political regions 
and/or to follow fisheries management criteria39 (Methods). However, 
it is possible that fish community responses to MHWs vary with the 
spatial scale at which they are measured, as has been found with other 
metrics of biodiversity40.

Ecological effects of climate change result from the interaction of 
long-term climatic change with short-term extreme events such as 
heatwaves5, which have been projected to cause widespread ecological 
devastation on land and in the sea (although see refs. 35,41). To date, 
this expectation has largely been based on case studies that select one 
or a few prominent species and ecosystems with remarkable MHW 
responses, rather than the comprehensive approach that we used. 
Analyses that focus on particular species that were historically preva-
lent in a region may be predisposed to find a biomass decline following 
a MHW, possibly due to unrelated time-series dynamics (for exam-
ple, mean reversion or density dependence) or because species that 
were dominant in historical climates might not be as successful after a 
MHW. In addition, case-study approaches tend to select and emphasize 
extreme responses42—although several regional studies focused on a 
single MHW event have also found no net loss of abundance or biomass 
in coral- or kelp forest-associated fishes26,43. Further empirical research 
that builds on the present study and extends beyond individual case 
studies is needed to interpret, contextualize and predict severe MHW 
effects2. Building partnerships to leverage existing non-public data-
sets from the Southern Hemisphere and other understudied parts of 
the global ocean will also be helpful in understanding how ecological 
context influences MHW responses39.

Our findings highlight the need to understand divergent responses 
to extreme events. Single-species responses may be mediated by ther-
mal tolerances, but we did not find evidence that cold-affiliated spe-
cies decline or that warm-affiliated species increase following MHWs 
(Fig. 4a). Other studies find that species’ responses vary from one 
extreme event to another41. Portfolio and storage effects may explain 
why ecosystem-level MHW effects are rare, but they do not reveal what 
caused certain MHWs to have deleterious ecological effects. Cumulative 
impacts of MHWs and other stressors such as harmful algal blooms13 or 
low-productivity events9 could play a role. Perhaps very extreme MHWs 
in the future will cross a tipping point beyond which adverse ecologi-
cal effects occur, but we did not see such a tipping point in the recent 
historical record. Other fields (for example, coral reef ecology) have 
identified such thresholds, although the generality of thresholds across 
ecological systems remains unclear44. Gaining mechanistic insight into 
why only some MHWs have deleterious effects, and on only some spe-
cies, is necessary for any future efforts to identify an effect threshold or 
forecast MHW impacts and should be a research priority for the field. In 
addition, ecosystem responses to extreme ‘pulse’ events such as MHWs 
can shape impacts of more gradual ‘press’ trends; the complex interac-
tions between these climate change effects warrant future research5.

Understanding MHW impacts on entire ocean ecosystems is particu-
larly crucial in the context of accelerating global change and efforts to 
advance towards ecosystem-based management that considers the 

many links between species and their environments45. MHW occur-
rences are projected to emerge above their natural variability within 
this century in many regions46. Future research will be needed to deter-
mine the extent to which fish community impacts of MHWs will grow 
as MHWs intensify, or whether portfolio and other ecological effects 
can buffer ecosystems from MHW impacts. Marine life is more vulner-
able to warming than terrestrial life, because marine organisms tend 
to live close to their thermal limits and fewer thermal refugia exist in 
the seas47. Observed and predicted changes in marine ecosystems in 
response to global warming formed part of the rationale behind the 
Paris Climate Agreement to limit the global mean surface temperature 
increase above industrial levels to 1.5 °C by 210048. As a future that is 
more than 1.5 °C warmer looks increasingly likely49, it is more critical 
than ever to develop a deeper understanding of what drives ecological 
responses to extreme climate events.
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Methods

All analyses were conducted in R50. Software versions are listed on 
GitHub.

Fish biomass and abundance data
We collated publicly available datasets from fishery management agen-
cies that use scientific (that is, fisheries-independent) bottom trawl 
surveys to monitor marine fish communities39. These surveys monitor 
biogeographically and/or politically distinct areas that are relevant 
to fisheries management39. Their footprints often follow marine eco-
system boundaries (for example, large marine ecosystems51) and are 
similar in size to the spatial extents of MHWs38. Although these surveys 
are conducted by many nations, we used only surveys by agencies that 
make their raw data publicly available, which facilitates reproduc-
ibility of this study. Those agencies were the National Oceanic and 
Atmospheric Administration (NOAA), Fisheries and Oceans Canada 
(DFO), the International Council for the Exploration of the Sea (ICES) 
and the Institute of Marine Research (IMR). This limitation constrained 
our analysis to the northeast Pacific, the northwest Atlantic and the 
northeast Atlantic (Fig. 1 and Supplementary Table 1).

In these surveys, the sampling unit is a single haul, that is, a sampling 
event in which a net is towed through the water. We filtered invalid hauls 
on the basis of reported sample quality, sampling times and availability 
of variables required to calculate taxon-level biomass data. Further 
detail on data cleaning and harmonization in addition to raw data and 
code can be found in Maureaud et al.52. All primary analyses used bio-
mass (weight) data; we conducted a supplementary analysis of the main 
results using abundance (count) data for the regions for which it was 
available (all but northeast USA; Extended Data Fig. 5).

Datasets were trimmed to standardize the spatial footprint of the 
survey over time, to match the available temperature datasets (SBT 
began in 1993 and SST began in 1982; MHW data), to remove years with 
very few samples and to omit samples collected outside the focal season 
(3-month interval) of each survey. We used the World Register of Marine 
Species53 to standardize taxonomies, and the ‘dggridR’ R package54 to 
standardize the survey footprints. Across our 18 surveys, we paired 
82,322 hauls with SBT and 100,877 hauls with SST. Of the 94% of hauls 
with an associated depth value, 90% occurred at depths of between 
18 m and 451 m. The depths sampled vary owing to each region’s unique 
bathymetry and each survey’s protocols, but surveys tend to sample 
similar depths over time; for example, the southeast USA survey sam-
ples very shallow inshore areas of just 3 m depth, whereas the Scotian 
Shelf and West Coast surveys routinely trawl deeper than 1,000 m. We 
used all taxa for biomass analyses, but only the species-level observa-
tions for community analyses (Species and CTIs).

We imputed zeros representing an observed absence in every 
instance when a taxon (that was observed at some point in the region) 
was not recorded in a haul. These absences can be considered true 
non-detections because of the standardized spatiotemporal design 
of bottom trawl surveys. We then calculated a mean biomass for each 
taxon in every year, and calculated region-wide biomass as the sum of 
taxon-level biomass. To assess the sensitivity of our results to the metric 
used, we also calculated median biomass, mean abundance and median 
abundance in the same way (although the northeast USA region did 
not have abundance data and was thus omitted from the abundance 
analysis). We did this across the entire survey domain (following the 
spatial standardization mentioned above), rather than within the ‘strata’ 
used in some analyses55, because not all of the surveys have stratified 
sampling designs and we wanted to be consistent across all regions.

Year-over-year mean biomass change was calculated as a natural log 
ratio, ( )ln

biomass
biomass

t

t−1
, where t is year. Log ratios for median biomass, mean 

abundance and median abundance were calculated the same way. For 
straightforward interpretation, we also reported percentage biomass 
changes in the text, although biomass log ratios were used in all models. 

For example, a 67% biomass increase means that biomasst = 1.67 ×  
biomasst−1. A 67% decrease means that biomasst = (1 − 0.67) × biomasst−1.

Because surveys began in different months, we paired each survey’s 
biomass data with MHW data from the preceding 12 months. For exam-
ple, for a survey that began in August, the August 2010 data were paired 
with MHW data from August 2009 to July 2010. Because we have no 
a priori information on the season in which MHWs could have the great-
est ecological impact—and this may vary by species and life stage—we 
analysed MHW effects over a full year (that is, 12-month interval). Some 
substantial MHW effects have been reported in summer56, and yet winter 
heatwaves strongly influence distribution and abundance for species 
limited by winter survival57,58. Warmer winters are considered to have 
driven recent ecological changes in the Gulf of Alaska12. Winter MHWs 
may also reduce recruitment in habitat-forming seaweeds6 and cause 
metabolic stress to coral reef fishes59. Spawners and embryos have 
narrower temperature tolerance ranges than non-spawning adults60; 
a spring heatwave could thus affect the survival or performance of 
spring-spawning fishes and their embryos. To test the sensitivity  
of our results to this choice, we also explored the effects of only summer 
anomalies on biomass change (Extended Data Fig. 2g).

Interannual biomass variability is significantly lower in surveys 
with more samples per year (linear regression; R2 = 0.08; P < 0.001). 
To account for this, all models and statistical tests either included a 
survey effect or used biomass log ratios that were scaled and centred 
within surveys.

MHW data
We paired the demersal bottom trawl data with MHWs calculated 
with SBT data from the Copernicus 1/12° (about 8 km) global ocean 
reanalysis, the Global Ocean Reanalysis and Simulations (GLORYS)61. 
The reanalysis dataset is generated with the Nucleus for European 
Modelling of the Ocean (NEMO) ocean model forced by the ERA-Interim 
atmospheric reanalysis. The model assimilates satellite altimetry, 
satellite SST, sea ice concentrations and in situ profiles of salinity and 
temperature. We chose GLORYS for our analyses because it provided 
daily estimates of temperature anomalies at depth at a fine spatial reso-
lution, and it reproduces nearshore bottom temperatures and recent 
MHWs with enhanced fidelity, compared with other products62,63. Being 
highly dependent on ocean observations for data assimilation, GLORYS 
began only in 1993. We used the 1993–2019 period for our analysis.

Because many bottom trawl datasets began earlier than 1993, 
we also calculated SST MHWs to conduct supplementary analyses 
with a longer time series. For SST, we used the NOAA daily Optimum 
Interpolation Sea Surface Temperature (OISST) Analysis v.2.1 data-
set64,65 with a horizontal grid resolution of 0.25°, which is available 
from 1982 onwards, to characterize MHWs. This dataset provides 
a daily global record of surface ocean temperature observations 
obtained from satellites, ships, buoys and Argo floats on a regular 
grid. Infrared satellite data from the Advanced Very High Resolu-
tion Radiometer are its main input and any large-scale satellite 
biases relative to in situ data from ships and buoys are corrected. 
Gaps are filled in by interpolation. We used the 1982–2019 period 
for our analysis. OISST and GLORYS are plotted against one another  
in Extended Data Fig. 4.

Following the standard definition of a MHW (for example, refs. 9,46), 
both SBT and SST anomalies were calculated within (not across) spatial 
units—here, the survey regions. This approach defines anomalies rela-
tive to historical conditions in a region, which are probably reflective of 
the environments to which organisms are adapted. In other words, each 
MHW we identified represented a departure from whatever climate the 
marine organisms in that region typically experienced. Because our 
study regions varied substantially in seasonality, natural variability and 
exposure to oceanographic phenomena, calculating anomalies from 
cross-region pooled SBT and SST values would identify only the most 
globally extreme events as MHWs and would omit the many events in 
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which temperatures were anomalously high for species within a region 
but not necessarily high for the global oceans.

For both SBT and SST, we defined a MHW as a period of at least five 
continuous days during which the SBT (or SST) averaged for each survey 
area was larger than a seasonally varying threshold given by the 95th 
percentile of the survey area averaged SBT (or SST) anomalies (relative 
to the mean seasonal cycle that is calculated for each calendar day 
individually). This is a common approach for defining MHWs, although 
some authors use the 90th percentile6 or the 99th percentile38 instead 
of the 95th. Under our definition, MHWs may occur throughout the 
year and at all locations.

The temperature data were linearly detrended before any analysis  
to distinguish discrete MHWs from the long-term warming signal 
(refs. 37,66 and Extended Data Fig. 3), although we also tested the 
sensitivity of our results to this decision by re-running the analysis with 
non-detrended data and reached equivalent conclusions (Extended 
Data Fig. 2c). Using the 5-day threshold and the detrended data, 
we identified 511 distinct surface MHWs in OISST and 248 bottom 
MHWs in GLORYS. Many years had several MHWs. GLORYS had fewer 
MHWs partly because the time series is shorter and partly because 
the MHWs it recorded were longer in duration (leading to fewer  
discrete MHW events relative to OISST, which recorded many shorter 
MHWs).

We then calculated different MHW metrics: MHW cumulative inten-
sity (the anomaly above the 95th percentile threshold summed over the 
duration of the event in °C-days, duration (number of days) and mean 
intensity (the average anomaly above the 95th percentile threshold over 
the course of the MHW in °C). We chose MHW cumulative intensity for 
the main analysis because it encompassed elements of both intensity 
and duration (that is, cumulative intensity is higher for longer or for 
more intense MHWs), but our biomass results did not change if we 
used different metrics (Extended Data Fig. 2d,e). Because, under our 
definition, all MHWs exceeded 95% of temperature anomalies in the 
region, even MHWs with relatively low cumulative intensities repre-
sented extreme events. Unless otherwise specified, models in the main 
text and supplementary information used MHW cumulative intensity 
centred and scaled within regions, although our results were not sen-
sitive to whether we scaled and centred within versus across regions 
(Supplementary Table 5).

In coral reef ecology, a threshold for ecological damage (that is, coral 
bleaching) has been identified using heating degree-days—the number  
of days that exceed average temperatures for the hottest summer 
month by at least 1 °C (ref. 16). We also processed the non-detrended 
GLORYS data using this method for each region (Extended Data 
Fig. 2f). One data product, Coral Reef Watch, calculates the average 
temperatures for the hottest summer month during a baseline period 
of 1985–1990 plus 199316. Because GLORYS began in 1993, we used the 
four-year interval 1993–1996 as the baseline to calculate the average 
temperatures for the hottest summer month.

The 5-day threshold for a MHW used in the main analysis was based 
on empirical analyses demonstrating that contemporary heatwaves 
last, on average, 4.6 days (ref. 67), and is widely used in the literature6, 
although we note that alternative methods exist to define and measure 
MHWs15,38,68. We also assessed whether MHW responses would emerge 
from classifying any daily anomaly (without the 5-day cutoff) as a MHW. 
We found no such relationship (Extended Data Fig. 2a).

Species and CTIs
The species temperature index (STI) and CTI are measures of thermal 
affinity at the species and community levels, respectively69. We quan-
tified STI as the median SSTs found throughout a species’ modelled 
range from the publicly available STI dataset in Burrows et al.25. STI 
values were available for 828 of our 1,769 focal taxa, comprising 82% 
of the total biomass in our survey dataset. CTI was calculated in each 
region and year as the biomass-weighted mean of all STIs, and we used 

the difference in CTI from one year to the next as our metric of CTI 
change. We also quantified the thermal bias of each species relative 
to the community (STI − CTI)69.

Community beta-diversity metrics
Only observations identified at the species level were included in spe-
cies composition change (beta diversity) analyses. To assess the impact 
of MHWs on community structure, we compared Bray–Curtis dissimi-
larities between surveys spanning a MHW with those between years that 
did not span a MHW. We partitioned the Bray–Curtis dissimilarity into 
two components (biomass gradient and balanced variation) using the 
betapart package in R29,70. The biomass gradient component focuses 
on changes in biomass of species between years within the survey  
region, whereas the balanced variation component focuses on the 
substitution of the biomass of one species by the biomass of another 
species. For comparison, we also calculated occurrence-based dis-
similarity metrics (with species presence–absence data) using Jaccard 
dissimilarity partitioned into nestedness and turnover components. 
Balanced variation and turnover both measure substitution of species 
between communities whereas biomass gradient and nestedness both 
measure how species are subsetted between communities.

Further predictors
We conducted supplementary analyses to explore the role of sev-
eral further predictors of fish biomass change. In addition to the 
geographical shifts that may lead to changes in biomass and com-
munity composition in a fixed area, marine fishes may shift deeper 
in response to warming71,72. We tested for this effect by calculating 
depth log ratios that described whether assemblages had shifted 
deeper or shallower from one survey-year to the next. Depth log ratio 
was quantified by the following three steps. (1) Taking an average of 
depths at which a species was found in each survey and year, using 
the depth observations for each haul, and weighted by biomass in 
the haul. (2) Taking a biomass-weighted mean of all species-level 
depth values for the entire survey. (3) Calculating the log ratio of the 
survey-level, biomass-weighted depth values from one year to the 
next. We found no relationship between MHW cumulative intensity 
and depth log ratio and no difference between depth changes that 
did and those that did not follow a MHW (Extended Data Fig. 6 and 
Supplementary Table 9).

Marine communities across latitudes have responded differently to 
climate change, with some declines in species richness recorded in the 
tropics and at equatorward range edges23,73 and some increases in spe-
cies richness recorded in colder oceans and at poleward range edges73,74. 
We tested for latitudinal trends in biomass log ratios and found that 
the direction or magnitude of biomass change was not related to the 
median latitude of the region (Supplementary Table 8).

We explored whether species traits helped to predict species-level 
biomass change in general, and specifically in the context of MHWs. All 
fish species traits were obtained from the database in Beukhof et al.75. 
Of the 1,769 taxa used in the main analysis, 1,588 had trophic-level data, 
1,559 had feeding mode data and 1,580 had habitat data. The pattern 
of no relationship between MHW cumulative intensity and biomass 
log ratio persisted when data were grouped by trophic level, feeding 
mode or habitat (Extended Data Fig. 7).

Some studies find that marine communities respond rapidly to envi-
ronmental change76. Others suggest that ecological responses may lag 
disturbances by years77. We explored whether MHW data from further 
into the past—up to 5 years before each trawl survey—predicted bio-
mass responses. Analogous to our findings for MHWs that occur up 
to 12 months before each survey reported in the main text, we found 
no evidence that biomass change is associated generally with MHW 
cumulative intensity from prior years (Supplementary Table 6).

Because fishing, through increased mortality, can influence tempo-
ral biomass change, we also analysed the effects of catch on biomass 



change. We extracted a historical time series of reconstructed catch 
values from the Sea Around Us database78 (http://www.seaaroundus.
org/) by marine ecoregions78. The Sea Around Us reconstructed catches 
are spatially allocated to half degree ocean cells79, which permits catch 
data to be assigned to spatial entities such as the 232 marine ecore-
gions identified by ref. 78. We then paired our survey footprints with 
the most overlapping marine ecoregions. In most cases, the marine 
ecoregions and survey footprints were similar. For two large surveys 
(the West Coast and the northeast USA), we summed catch data across 
two adjacent marine ecoregions. Two small surveys (France and the 
English Channel) did not correspond well to the marine ecoregions 
and were omitted from the fishing analysis. Because catch data are 
recorded by calendar year, and the surveys often occur mid-year, we 
fitted models comparing biomass change in a given year to the mean 
catch level in the previous 3 calendar years (Supplementary Table 10).

Statistical methods
We tested for the effects of MHWs using linear models, generalized 
linear models or generalized additive models for continuous variables. 
Models and transformation of variables are described in Supplemen-
tary Tables 2–11. Generalized linear models were fitted with the R pack-
age ‘glmmTMB’80 and generalized additive models with the R package 
‘mgcv’81. When comparing MHW effects with non-MHW effects, we 
used two-sided t-tests. Although not all of the datasets were normally 
distributed, the t-test is insensitive to skewness for large sample sizes 
such as ours, whereas non-parametric alternatives are better suited 
to smaller sample sizes82.

Power analysis
We simulated data to assess whether our study had sufficient power to 
detect MHW-driven biomass changes. We fitted an autoregressive linear 
model of log biomass over time (Gompertz model) to each region’s 
biomass data, including MHW presence/absence as a predictor. We 
extracted the coefficient ρ, intercept α and conditional standard devia-
tion σ of this model, and used them to simulate data from the same 
Gompertz model:

B α ρ B γ σln( ) = + × ln( ) + × MHW + ′t t t−1

where B represents biomass in year t, MHW is a binary variable for 
MHW presence/absence and γ represents the ‘true’ MHW effect that 
we varied to explore power. This simulation also included an error 
term σ′ calculated as a random draw from a normal distribution with 
mean 0 and standard deviation σ. We (1) varied the number of years 
the simulation was run (assuming that each of the 18 surveys was 
conducted for that number of years) from 10 to 40 in 1-year steps 
and 50–200 in 10-year steps with a fixed value of γ = ln(0.94), cor-
responding to the 6% loss of biomass predicted by Cheung et al.3, 
and (2) varied γ to represent biomass losses ranging from 1% to 30% 
(in 1% increments up to 10%, and then in 5% increments) given the 
actual number of years of data we had (n = 369 for SBT and n = 441 
for SST). Note that the mean survey duration in our analysis was 
20–25 years depending on the paired temperature dataset used. For 
all these scenarios, simulations were run for each individual survey,  
converted into log ratio units (as used in the main text), scaled 
and centred within regions and pooled across regions. Each set of 
simulations was run 1,000 times for each condition (survey and  
either number of years or γ).

With these four simulated datasets—a true MHW effect on biomass of 
−6% and variable numbers of years, or a fixed number of years from the 
real dataset and a variable effect of MHW on biomass, each for SST and 
SBT—we conducted the same statistical tests as we did in the main text 
to test for an effect. For every iteration of the simulation, we split the 
biomass log ratio data into MHW and non-MHW years and compared 
the two with a two-sided t-test. We then calculated what proportion 

of those tests were significant (P ≤ 0.05). These results are shown in 
Extended Data Fig. 9.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in this project are available at https://doi.org/10.17605/
OSF.IO/H6UKT.

Code availability
The code for this study is publicly available on GitHub at https://github.
com/afredston/marine_heatwaves_trawl and archived at https:// 
doi.org/10.17605/OSF.IO/H6UKT.
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Extended Data Fig. 1 | Alternate version of Fig. 2 from the main text, 
showing results by region. MHWs were calculated from the detrended 
GLORYS sea bottom temperature data with a five-day minimum duration 
threshold for MHWs, as used in the main text. Points represent log ratios of 

mean biomass in a survey from one year to the next. The fitted lines are linear 
regressions. The shaded areas are 95% confidence intervals. Survey names and 
sample sizes per survey are listed in Supp. Tab. 1.



Article

Extended Data Fig. 2 | Results did not change when alternative methods 
were used to quantify marine heatwaves. Results were robust to (a) removing 
the five-day threshold for MHWs, (b) using SST from OISST instead of SBT from 
GLORYS (detrended), (c) using non-detrended data, (d) using a MHW metric of 

duration (days), (e) using a MHW metric of intensity (°C), (f) calculating degree 
heating days instead of MHW anomalies, and (g) using only summer MHWs 
(see Methods). The fitted lines are linear regressions. The shaded areas are 95% 
confidence intervals. For all panels n = 369 except in (b) n = 441.



Extended Data Fig. 3 | Marine heatwave cumulative intensity (total anomaly 
in °C-days) in each survey region with and without detrending the 
temperature data to remove the signal of secular warming. The main text 
results are detrended. Here, we plot MHW cumulative intensity based on all SBT 

anomalies from GLORYS, rather than applying the five-day threshold that was 
used the main text, to more clearly show the differences between the two 
methods.
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Extended Data Fig. 4 | Daily 95th percentile anomalies in the two marine 
heatwave data sources: sea surface temperature from OISST and sea 
bottom temperature from GLORYS (both detrended). To simplify 

comparison we plot all anomalies, not just those MHWs that exceeded a 
five-day threshold. Note that the OISST time-series began in 1982 and GLORYS 
began in 1993. Region names are listed in Supp. Tab. 1.



Extended Data Fig. 5 | Results are consistent across different metrics of  
the fish community. We calculated mean abundance (a), mean biomass  
(b, used in the main text), median abundance (c), and median biomass (d). MHWs 
were calculated from the detrended GLORYS sea bottom temperature data 
with a five-day minimum duration threshold for MHWs, as used in the main 

text. Points represent log ratios of each metric in a survey from one year to the 
next (n = 343). The fitted lines are linear regressions. The shaded areas are 95% 
confidence intervals. The Northeast US survey was omitted because it did not 
have abundance data recorded.
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Extended Data Fig. 6 | Depth changes in the fish assemblage in response  
to marine heatwaves. Fish assemblage depth change (log ratio) was not 
predicted by (a) the presence or absence of a MHW or (b) MHW cumulative 
intensity (total anomaly in °C-days; n = 369). MHWs were calculated from the 

detrended GLORYS sea bottom temperature data with a five-day minimum 
duration threshold for MHWs, as used in the main text. The fitted line in (b) is a 
linear regression and the shaded area is its 95% confidence interval.



Extended Data Fig. 7 | Marine heatwave effect on taxon-specific biomass 
log ratios grouped by traits. Biomass log ratio and MHW cumulative intensity 
(total anomaly in °C-days) grouped by (a) feeding mode (n = 29,628), (b) trophic 
level (n = 29,909), and (c) habitat preference (n = 29,681) of each taxon. Trait 

data were extracted from Beukhof et al75. (see Methods). MHWs were calculated 
from the detrended GLORYS sea bottom temperature data with a five-day 
minimum duration threshold for MHWs, as used in the main text. Fitted lines 
are linear regressions. Shaded areas are 95% confidence intervals.
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Extended Data Fig. 8 | The presence or absence of a MHW did not affect 
temporal community dissimilarity. We measured community dissimilarity  
as partitioned occurrence-based beta diversity metrics of substitution and 
subset (Jaccard turnover (a) and nestedness (b)) and partitioned biomass- 
based beta diversity metrics of substitution and subset (Bray-Curtis balanced 

variation (c) and biomass gradient (d)). Community dissimilarity metrics were 
calculated within each region from one year to the next (n = 369). MHWs were 
calculated from the detrended GLORYS sea bottom temperature data with a 
five-day minimum duration threshold for MHWs, as used in the main text.



Extended Data Fig. 9 | Results from a power analysis simulating how much 
data would be required to detect a range of MHW-induced biomass losses. 
Approximately 600 survey-years in total (summed across all regions) would be 
required to find a significant effect if MHWs reduced biomass by 6% using 
either the GLORYS (a) or OISST (b) datasets; the dashed vertical line shows the 

sample size of our actual datasets. Given the true size of our datasets (n = 369 
survey-years for GLORYS and 441 for OISST), our analysis had the power to 
detect a MHW-induced biomass decline of ~9% with GLORYS (c) and ~8% with 
OISST (d). The dashed horizontal line denotes one conventionally accepted 
threshold for power (0.8).
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Extended Data Fig. 10 | Biomass trends over time in each survey. The top  
five taxa by biomass are highlighted. Shaded grey rectangles denote when any 
MHWs occurred in the preceding survey-year. MHWs were calculated from the 

detrended GLORYS sea bottom temperature data with a five-day minimum 
duration threshold for MHWs, as used in the main text. Note that x- and y-axes 
vary depending on time-series length and overall survey catch.








	Marine heatwaves are not a dominant driver of change in demersal fishes
	Online content
	Fig. 1 Of 18 regions studied from the Atlantic and Pacific Oceans, all experienced MHWs during the available scientific fish survey time series.
	Fig. 2 More intense MHWs were not associated with a decline in fish biomass or an increase in biomass variability, and biomass was approximately as likely to increase as it was to decrease from one year to the next, regardless of whether a MHW occurred.
	Fig. 3 Example of divergent responses to a large MHW.
	Fig. 4 Scientific bottom trawl surveys during the year following MHWs were as likely to exhibit tropicalization and/or deborealization as those that did not follow MHWs.
	Extended Data Fig. 1 Alternate version of Fig.
	Extended Data Fig. 2 Results did not change when alternative methods were used to quantify marine heatwaves.
	Extended Data Fig. 3 Marine heatwave cumulative intensity (total anomaly in °C-days) in each survey region with and without detrending the temperature data to remove the signal of secular warming.
	Extended Data Fig. 4 Daily 95th percentile anomalies in the two marine heatwave data sources: sea surface temperature from OISST and sea bottom temperature from GLORYS (both detrended).
	Extended Data Fig. 5 Results are consistent across different metrics of the fish community.
	Extended Data Fig. 6 Depth changes in the fish assemblage in response to marine heatwaves.
	Extended Data Fig. 7 Marine heatwave effect on taxon-specific biomass log ratios grouped by traits.
	Extended Data Fig. 8 The presence or absence of a MHW did not affect temporal community dissimilarity.
	Extended Data Fig. 9 Results from a power analysis simulating how much data would be required to detect a range of MHW-induced biomass losses.
	Extended Data Fig. 10 Biomass trends over time in each survey.




